WANDA

US Nuclear Data Program

- This is to provide updates on WANDA effort since the last NDAC meeting
- The Nuclear Data Working Group (NDWG) determines cross-cutting mission-driven nuclear data needs and selects topics for WANDA roadmapping sessions
- Based on summary reports from C. Romano's talk & Jankowski's at WANDA 2023, past WANDA talks, NSAC reports by the Nucley Data Charge Subcommittee, and USNDP annual reports

NDWG

Organizations Represented at NDWG Workshops (Courtesy Romano)

	Universities	National Laboratories	Federal Agencies
	Air Force Institute of Technology	Argonne National Laboratory	DOE
	Boston University	Brookhaven National Laboratory	Office of Science, Office of Nuclear Physics
	Central Michigan University	Idaho National Laboratory	Office of Science, Fusion Energy Sciences
		Jefferson Laboratory	
	Colorado School of Mines	Lawrence Berkeley National Laboratory	Office of Science, Office of High Energy Physics
	George Washington University	Lawrence Livermore National Laboratory	Office of Science, Adv. Scientific Computing Research
	Illinois Institute of Technology	Los Alamos National Laboratory	Office of Science, Isotope Program
	Johns Hopkins University	National Institute of Standards and Technology	Office of Nuclear Energy
	Michigan State University	National Superconducting Cyclotron Laboratory	ARPA-E
	North Carolina State University	Naval Nuclear Laboratory	NNSA
	Ohio University	Oak Ridge National Laboratory	Defense Programs, NA-11
	Oregon State University	Pacific Northwest National Laboratory	Defense Nuclear Nonproliferation, NA-20
	Rensselaer Polytechnic Institute	Sandia National Laboratories	Naval Reactors, NA-30
	Texas A&M University	Savannah River National Laboratory	Infrastructure & Environment, NA-50
	Triangle Universities Nuclear Laboratory	SLAC National Accelerator Laboratory, Stanford University	Defense Nuclear Security, NA-80
	United States Naval Academy	JPL - Jet Propulsion Laboratory	DOD
	Univerisity of Tennessee	Johns Hopkins Applied Physics Laboratory	Defense Threat Reduction Agency
	Univeristy of Wisconsin	Thomas Jefferson National Accelerator Facility	MDA - Missle Defense Agency
	University of California, Berkeley	Industry	AFTAC - Air Force Technical Applications Center
	University of Massachusetts	ARA	Other
	University of Michigan	Schlumberger	NRC - Nuclear Regulatory Commission
	University of Notre Dame	Studsvik, Scandpower	NASA - National Aeronautics and Space Administration
	University of Tennessee, Knoxville	Westinghouse	NIH - National Institute of Health, National Cancer Inst.
	University of Washington	X-energy	DHS - Countering Weapons of Mass Destruction
	University of California, Davis	The Aerospace Corporation	
	Missouri State University	Mayo Clinic	
	Carnegie Mellon University	KBR Wyle/ SSAI	
	Univeristy of Nevada, Las Vegas	International Agencies	
	Vanderbilt University	European Commission, Joint Research Centre	
	East Carolina University	International Atomic Energy Agency	
I	Kansas State University	Japan Atomic Energy Agency	
	Western Norway Univ. of Applied Sciences	National Institute for Nuclear Physics (INFN)	
	North Carolina Central University	UK Ministry of Defence	
	Duke University	European Space Agency	National Cancer Institute
	Technical University of Darmstadt	CERN	
	Lancaster University	Institute of Astronomy and Space Physics (IAFE)	
	Massachusetts Institute of Technology		

NDIAWG membership increased from 8 to 15 since 2020 (Courtesy Jankowski)

Boxes indicate new membership since 2020

SC (NP, HEP, FES)

Nuclear Energy

DTRA

Missile Defense Agency

NNSA

Human Spaceflight Electronics Propulsion/power Spectroscopy

Nuclear Physics (Experiment and Theory)

Wanda Topics that have Been Funded (Courtesy Romano)

"X" represents funded topical areas

					NDIAWG FOA-2952, 2023		
NDNCA (2015) Cross-cutting recommendations		WANDA2019 Topics	WANDA2022 Topics		Tonical areas are:		
Dosimetry Standards		Nuclear Data for Isotope Production x	Reactions on Unstable Nuclei				
Fission	х	Safeguards x	High Energy Ion Interactions and Secondary Particles		A. <u>DUE NP:</u>		
Decay Data and g-Branching Ratios	Х	Materials Damage	Neutrons as Secondary Particles and Interactions		1) Legacy data for		
Neutron Transport Covariance Reduction		Nuclear Data for Nuclear Energy x	Photon Reactions and Transport Stopping Powers, Energy Depostion and Dose		completing the nuclear data		
Expanded Integral Validation		(n,x) Reactions x			pipeline		
Antineutrinos from Reactors			Nuclear Data Adjustments and Impact on		2)nuclear data henchmarks		
	Х	Atomic Data, NRF Data	Applications				
				Ц	B. <u>DUE NNSA</u>		
NDEM (2016) Cross-cutting recommendataions		WANDA2020 Topics	WANDA 2023 Topics		1) (a,n) reaction data		
Improving the Pipeline infrastructure	Х	Covariance/Uncertainty/Sensitivity/Validation	Gamma Strength Functions & Level Densities		relevant to safeguards and		
Improved Covariance Data		Nuclear Data for Isotope Production and Targetry	Summa Strength Functions & Level Defisities		arms control verification		
		Needs X	Fission Product Yields, where we are and where		2) Fission data for		
Inelastic Scattering on actinides		Machine Learning/Al	we're headed		safaquards and forensics		
Capture gamma spectra		Detector Models, Atomic Data and Stopping Powers	Department of Energy Isotope Program Nuclear Processing & Preservation				
Improved Fission yields		scattering, transport and shielding x			applications		
Fundation to Support Nuclear Data		Noutron induced gammas and gamma decay			3) Cross sections for		
Experiments		Neutron induced gammas and gamma decay			reactions involving short-		
NDRFW (2018) Topics					lived fission products		
Lincertainty Sensitivity and Covariance		Advanced Computing for Nuclear Data					
Neutron Capture and Associated Spectra		Predictive Codes for Isotone Production					
Neutron capture and Associated Speetra	^	Expanded Benchmarks and Validation for Nuclear					
Fission L Independent and Cumulative Yields	x	Data					
Gamma-Induced Reactions		Nuclear Data for Space Applications		.,			
Inelastic Neutron Scattering and Associated Spectra		Nuclear Data for Advanced Reactors and Security	x x x		p) nuclear data		
Fission II, Prompt Gammas and Neutrons		The Human Pipeline for Nuclear Data			for Commercial		
(α,n) Reactions					MCFR reactors, by		
Targets, Facilities and Detector Systems		WoNDRAM Topics			isneros WANDA 2021		
Fission III, Decay Data		Reactor Antineutrino Source Term x			CFR-C 500-1200 MWe		
Development of Benchmark Exercises		Antinneutrino Spectrum Calculations x					
Data Processing & Transport Code Needs		Detector Response					
Actinide Cross Sections	х						

Courtesy Romano	FY start	Title	Lead	PI
	FY18	Novel Approach for Improving Antineutrino Spectra Predictions for Nonproliferation Applications	ANL	Kondev, Filip
CO Million NDIANC	FY18	Improving the Nuclear Data on Fission Product Decays at CARIBU	ANL	Savard, Guy
\$50 MILLION NDIAWG	FY19	Independent Fission Product Yields from 0.5 to 20 MeV	LANL	Winkelbauer, Jack
EOA Eunded	FY19	Energy Dependent Fission Product Yields		Tonchev, Anton
I OA Fullueu	FY19	Measurements of Independent Fission Product Yields	LANL	Duke, Dana
Projects Since 2018		Beta-strength function, reactor decay heat, and anti-neutrino properties from total absorption		
	FY19	spectroscopy of fission fragments	ORNL	Rykaczewski, Krzysztof
		Integral Measurements of Independent and Cumulative Fission Product Yields Supporting Nuclear		
	FY19	Forensics and Other Applications	LANL	Bredeweg, Todd
	FY19	Evaluation of Energy Dependent Fission Product Yields	LANL	Kawano, Toshihiko
USINDP PIS	FY19	Improving the double-differential 238U(n,n'g) cross section using neutron-gamma coincidences	LBNL	Bernstein, Lee
	FY20	Scoping Study of the Impact of (alpha,n) Reactions and Yields of Nonproliferation Applications	ORNL	Romano, Catherine
Most USNDP	FY20	Assessment of Nuclear Data Needs for Neutron Active Interrogation	ORNL	McConchie, Seth
members participate FY as co-PI or co-I rolls		Fission product yield measurements using 252Cf spontaneous fission and neutron-induced fission on		
	FY20	actinide targets at CARIBU	ANL	Savard, Guy
	FY20	Modernization and Optimization of the Evaluated Nuclear Structure Data File	BNL	McCutchan, Elizabeth
		238U(p,xn) and 235U(d,xn) 235-237Np Nuclear Reaction Cross Sections Relevant to the Production of		
for other NDIAWG	FY20	236gNp	LBNL	Bernstein, Lee
funded projects	FY21	Neutron Scattering Cross Sections: (n,n'), (n,n'g), and (n,g) Measurements	USNA	Vanhoy, Jeff
	FY19	State-of-the-art Gamma-ray Spectroscopy to Enhance the ENSDF	BNL	McCutchan, Elizabeth
	FY22	Gamma Rays Induced by Neutrons	BNL	Brown, Dave
		White-source neutron-gamma coincidence measurements of gamma production cross sections at		
	FY22	LANSCE	LANL	Kelly, Keegan
	FY22	Evaluation of Gamma-ray Production	LANL	Kawano, Toshihiko
	FY22	ß-energy spectral shapes in fission products affecting reactor decay heat and anti-neutrino flux	ORNL	Charlie Rasco
	FY22	Two and Three-body Photodisintegration of the Triton at Energies Below 30 MeV	Duke Univ	Calvin Howell
	FY22	Designing Nuclear-data Measurements that Resolve Discrepancies in Existing Data	LANL	Denise Neudecker
	FY22	Modern Structure-based Nuclear Data Evaluations for Basic Science, Nuclear Safety & Security	LANL	Mark Paris

Nuclear Data Advisory Committee – Sep. 13-14, 2023

US Nuclear Data Program

During WANDA

- Communications and coordination across different communities and program offices are the key to success of WANDA
- Collect subject matter expert input, including nuclear data priorit and recommended solutions
- Increased interest and integration of basic science community
- Educate nuclear data pipeline, nuclear data challenges, and effect Continue to expand federal program involvement, eventually ded application needs
- Emphasis on "build evaluator workforce"
- Ensure recommended nuclear data improvements are mission driven and will provide impact

US Nuclear Data Program

Nuclear Data Advisory Committee – Sep. 13-14, 2023

USNDP and WANDA

• USNDP Provided

PHITS 🍟

- -needed Nuclear Data Pipeline education,
- -initiation of improving lacking areas in Nuclear Data,
- -integration of Nuclear Data Lifecycle,
- -identification of specific Nuclear Data expertise per application needs
- USNDP PIs Participate in NDWG

US Nuclear Data Program

- Fully engaged at WANDA meetings and NDIAWG calls
- Provided supports and guides to organize WANDA meetings

OpenMC scale 6 GEANT4

Timely incorporated the new experimental outcome of NDIAWG projects, through evaluations
of fission product yields, antineutrino spectra, gamma-ray production, and more to come with
new projects

Experiment

Nuclea Theory Evaluation

• Extend collaborations beyond USNDP, in partnership with national labs and universities

Nuclear Data Advisory Committee – Sep. 13-14, 2023

Processing

Sensitivity

General

purpose

Library

Integral Experiment

Validation

Adjusted

lbraries.

Application

USNDP outlook for WANDA

 While participating the past WANDA meetings and NDWG meetings, we gained experience on

-advertising our capabilities to new federal programs
 -maneuvering logistics to deal with different agencies (federal, industry, foreign, etc.)
 -improved efficiency from experiment, evaluation,... to dissemination
 -continue to be a coordinating center to outreach new

Where WANDA is heading

 Further extension to other application areas and federal/industrial programs
 Support transition of capabilities, especially recently developed thru WANDA
 Invest on long-term efforts, i.e. new library development for charged particle up to several hundred MeV (isotope and space applications), stopping powers(material damage-, fusion-, Astro- applications), ...

-Continue emphasizing the workforce development for Nuclear Data

