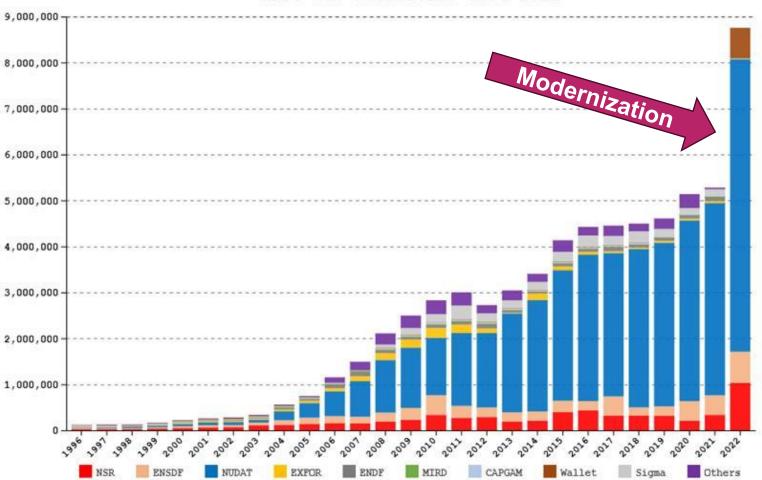


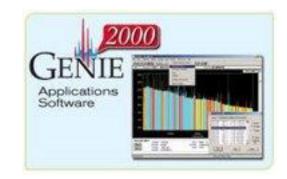
Web Dissemination


Benjamin Shu, Donnie Mason, on behalf of the USNDP National Nuclear Data Center (NNDC)

September 14th, 2023

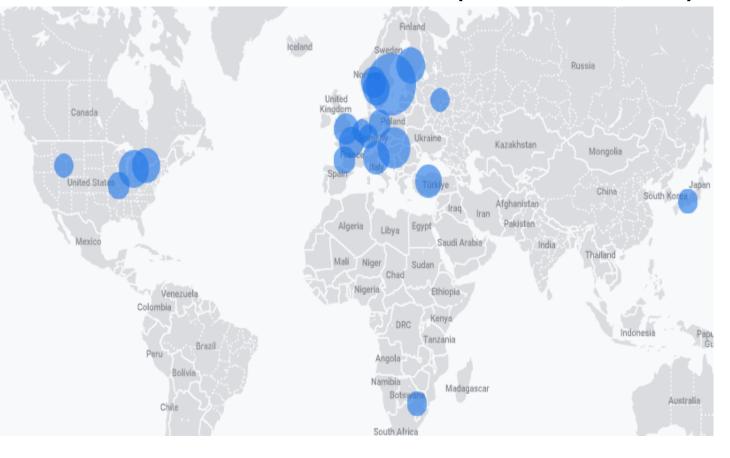
Web Statistics

- Consistent growth
- >8 million retrievals in FY22
- Every web application saw growth, notably NuDat, ENSDF, Wallet Cards and NSR
- >6 million retrievals from NuDat 3
- Only a lower limit for the reach of our databases



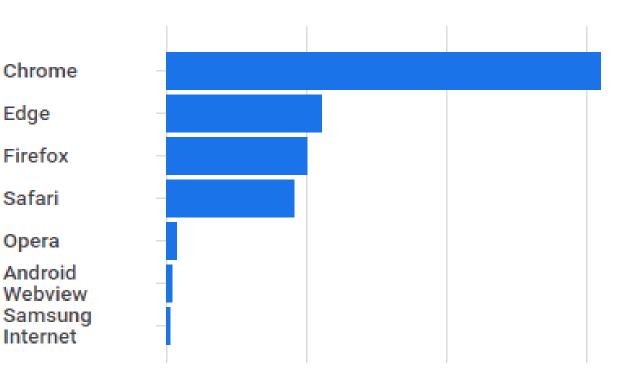
Database Users

- Reactor design, simulation and licensing codes
- Nuclear waste and repositories
- Radiation spectroscopy, dose, detectors, and shielding
- Defense and CTBTO
- A few examples
 - Scale
 - Geant
 - Gadras
 - \circ RadWare
 - And many more


Google Analytics

- Google analytics for broad overview
- Overviews per web application
- Focus modernization efforts
- Provide a better experience for the most users possible

Life-time Geolocation data


Real-time Geolocation data (09/12/23 9am EST)

Google Analytics

- Google analytics for broad
 overview
- Overviews per web application
- Focus modernization efforts
- Provide a better experience for the most users possible

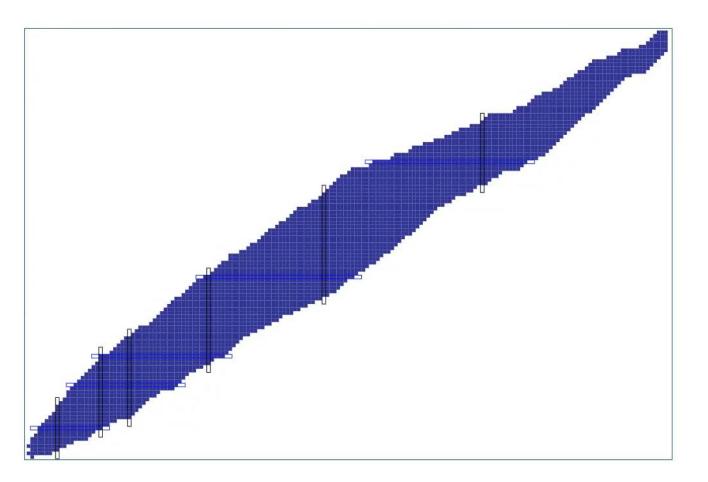
Web browser

Google Analytics

- Google analytics for broad overview
- Overviews per web application
- Focus modernization efforts
- Provide a better experience for the most users possible

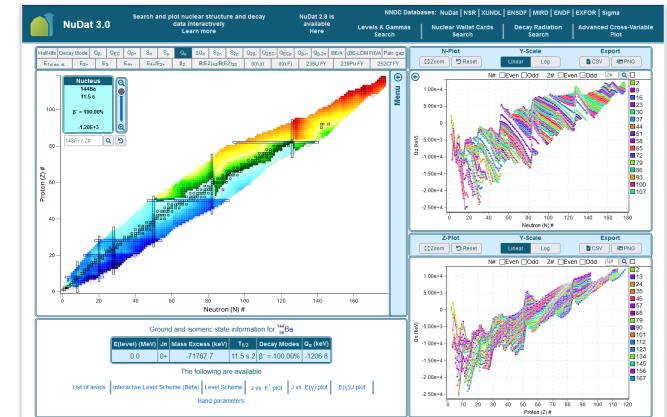
• MOBILE 13.5%	• TABLET

Device type / Operating system


	Windows	
	Macintosh	
	Linux	
	Android	
	iOS	
.9%	Chrome OS	
	FreeBSD	

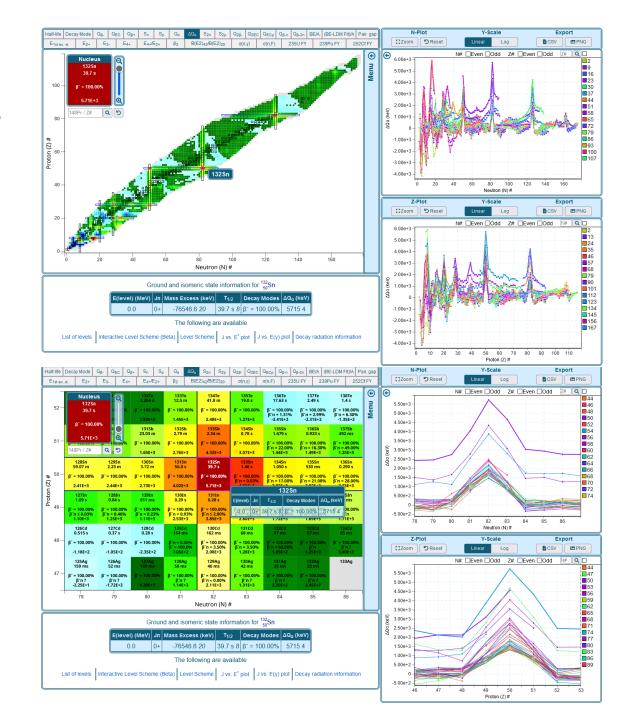
Custom Analytics

2021-10-27

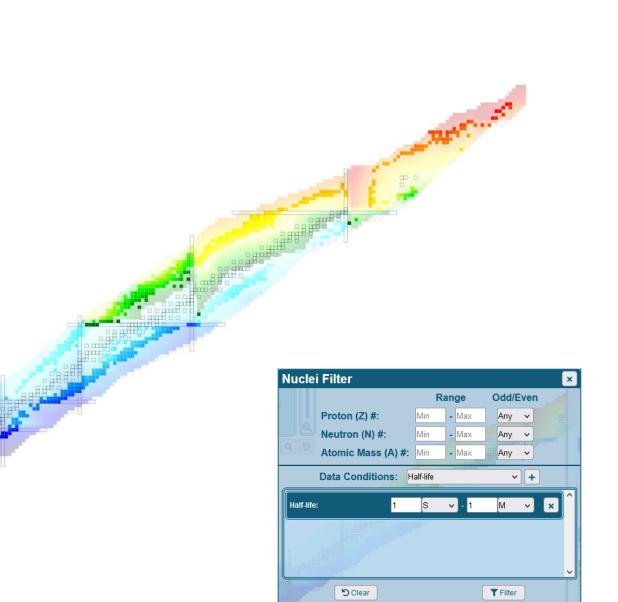

- Web application specific analytics
- NuDat 3 nuclide 'popularity' by date (right)
- Physics insights
- Prioritization of evaluations
- Only possible due to modernization efforts

NuDat 3.0

- Major overhaul to one of our most frequently visited web applications
- Transitioned from to server-side to client-side image generation
 - Significant performance improvements
 - Dramatically reduced load times
 - Responsive visualizations for better UX
- Overwhelmingly positive user feedback
- Future plans
 - Ongoing optimization
 - Additional features
 - Similar modernization overhauls for other web applications

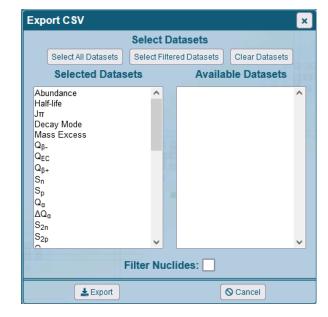


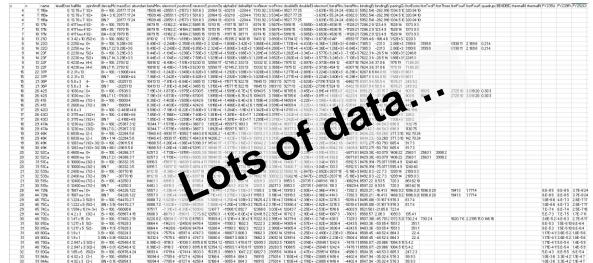
- Responsive visualizations
 - Seamless pan/zoom controls
 - Synchronized plots
- Advanced data filtering
- Export data as CSV/JSON
- Export chart or selection as PNG/SVG
- Upcoming features


Brookhaven

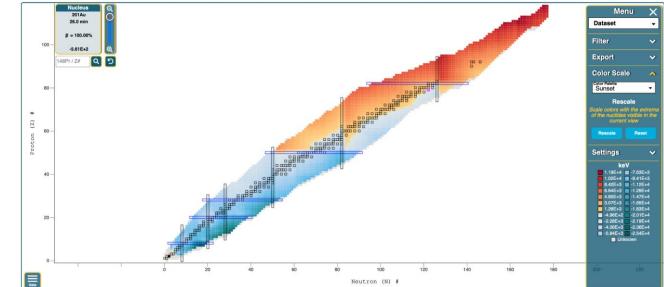
National Laboratory

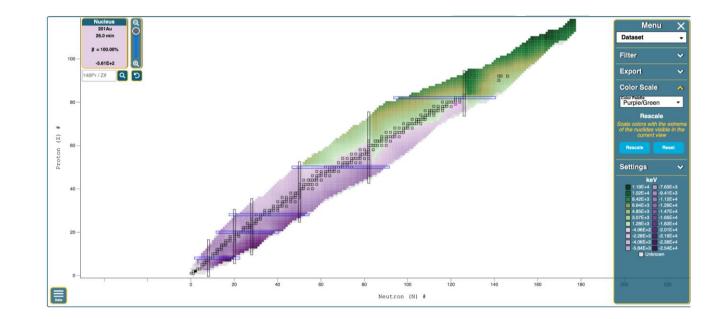
- Improved user interface
- 3D visualizations
- Additional datasets

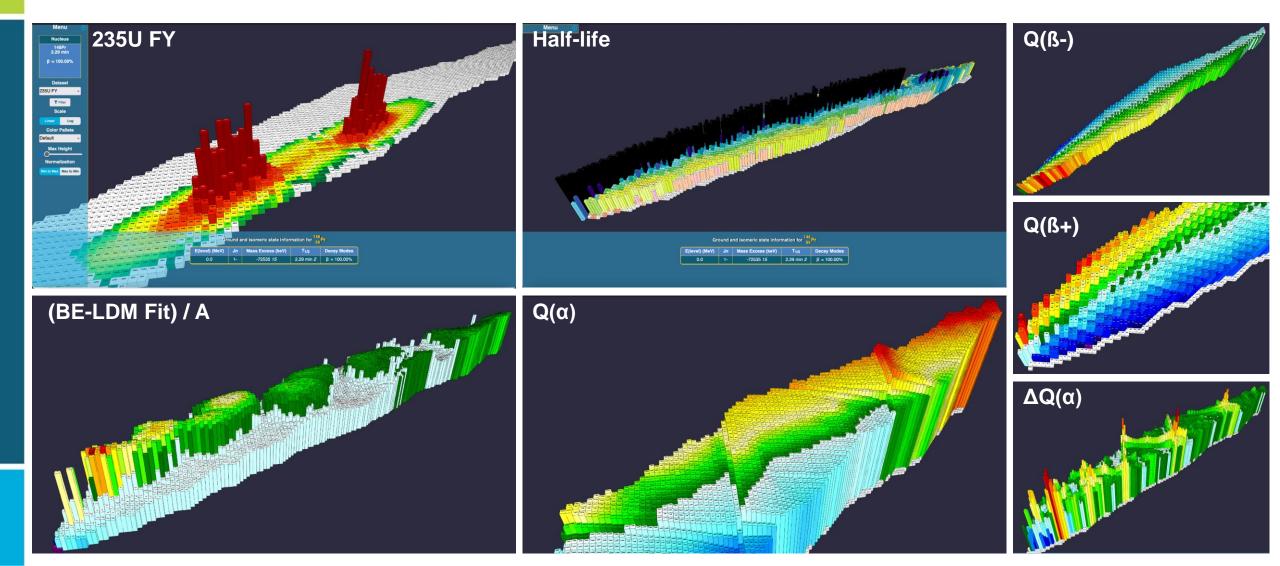



- Responsive visualizations
 - Seamless pan/zoom controls
 - Synchronized plots
- Advanced data filtering
- Export data as CSV/JSON
- Export chart or selection as PNG/SVG
- Upcoming features
 - Improved user interface
 - 3D visualizations
 - Additional datasets

- Responsive visualizations
 - Seamless pan/zoom controls
 - Synchronized plots
- Advanced data filtering
- Export data as CSV/JSON
- Export chart or selection as PNG/SVG
- Upcoming features
 - Improved user interface
 - 3D visualizations
 - Additional datasets





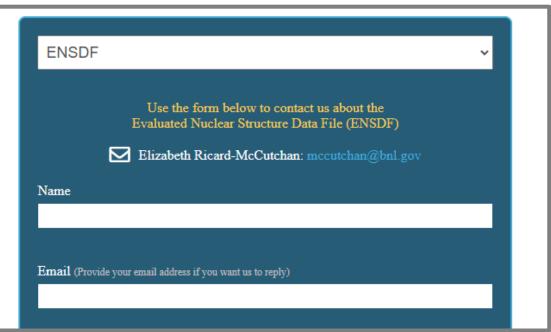

- Responsive visualizations
 - Seamless pan/zoom controls
 - Synchronized plots
- Advanced data filtering
- Export data as CSV/JSON
- Export chart or selection as PNG/SVG
- Upcoming features
 - Improved user interface
 - 3D visualizations
 - Additional datasets
 - Additional color palettes
 - Accessibility

3D Chart of Nuclides (Coming soon)

Unified Web Design

New header/footer added to help users navigate

• Links to major data sources as well as new contact page

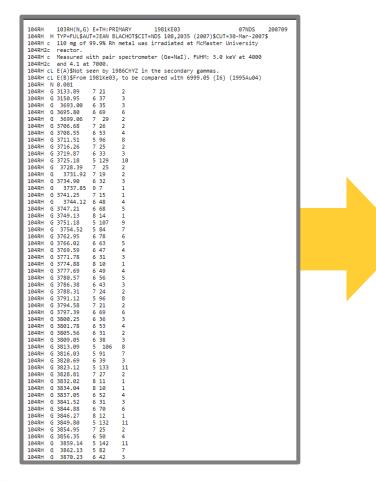

National Nuclear Data Center	😑 Databases 🛛 😤 Struct	ture & Decay 🔅 Reactions	Resources	Brookhaven ⁻ National Laboratory
National Nuclear Data Center Building 817 Brookhaven National Laboratory Upton, NY 11973-5000		Networks Tools & Codes		lear Data Sheets nowledgements
 Contact Us (631) 344-2902 nndc@bnl.gov 	Databases	PuRe Data Resource	Disclaimer	
Follow Us	National Laboratory			F Office of Y Science

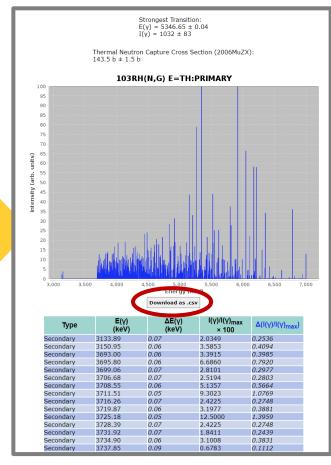
Unified Web Design (contd.)

Updated contact page to streamline user feedback

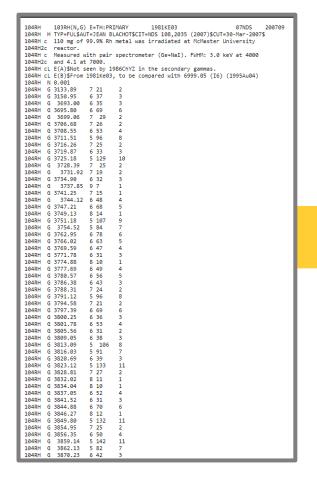
- Sends emails to NNDC staff based on selected library/website
- Has led to a noticeable increase in user emails

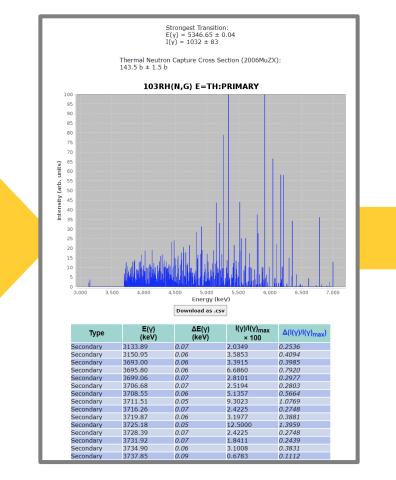
	Contact Us
How can we help?	~
How can we help?	
General Databases ENSDF XUNDL ENDF EXFOR NSR Web Applications NuDat Sigma MIRD Capgam Logft Other (not listed) Publications Nuclear Data Sheet Nuclear Wallet Card	




Ease-of-Access Features

104RH	103RH(N.G)	E=TH:PRI	RY 1981KE03	07NDS 200709
				2007)\$CUT=30-Mar-2007\$
			tal was irradiated at I	
104RH2c				
		th nair	ectrometer (Ge+NaI). F	WHM: 3.0 keV at 4000
	and 4.1 at		ceeromeeer (dermar). I	Min. 5.0 Kev at 4000
			ChYZ in the secondary	() mm) (
104RH CL 104RH N		1901Ke05,	o be compared with 699	9.05 {16} (1995AU04)
104RH N 104RH G				
		7 21		
104RH G		6 37		
	3693.00			
104RH G		6 69		
104RH G	3699.06	7 29		
104RH G	3706.68	7 26		
104RH G	3708.55	6 53		
104RH G	3711.51	5 96		
104RH G		7 25		
104RH G		6 33		
104RH G	3725.18 3728.39	5 129	0	
104RH G	3728.39	7 25		
	3731.92			
104RH G	3734.90	6 32		
104RH G	3737.85	97		
104RH G	3741.25	7 15		
104RH G	3744.12	6 48		
104RH G	3747.21	6 68		
104RH G	3749.13	8 14		
104RH G	3751.18	5 107		
104RH G	3754.52	5 84		
104RH G	3762.95	6 78		
10400	2766 02	6.63		
104RH G	3760.02 3769.59 3771.78 3774.88 3777.69 3780.57 3786.38	6 47		
104RH G	3771.78	6 31		
104RH G	3774.88	8 10		
104RH G	3777.69	6 49		
104RH G	3780.57	6 56		
104RH G	3786.38	6 43		
104RH G	3788 31	7 24		
104RH G	3791.12	5 96		
104PH G	3794 58	7 21		
104RH G	3788.31 3791.12 3794.58 3797.39 3800.25 3801.78	6 69		
104RH G	3800 25	6 36		
104PH 6	3801 78	6 53		
104RH G	3805 56	6 31		
10404	3805.56	6 39		
10480 6	3809.05 3813.09	5 106		
104RH 0	2012.09	5 100		
104KH G	3816.03 3820.69 3823.12	0.00		
104KH G	3020.09	0 39	1	
104KH G	2023.12	2 133		
104RH G		7 27		
104RH G	3832.02 3834.04	8 11		
104RH G	3834.04	8 10		
104RH G	3837.05	6 52		
104RH G	3841.52 3844.88	6 31		
104RH G	3844.88	6 70		
104RH G	3846.27	8 12		
104RH G		5 132	1	
104RH G	3854.95	7 25		
104RH G	3856.35	7 25 6 50 5 142		
			1	
	3862.13			
	3870.23			


Ease-of-Access Features (contd.)



Ease-of-Access Features (contd.)

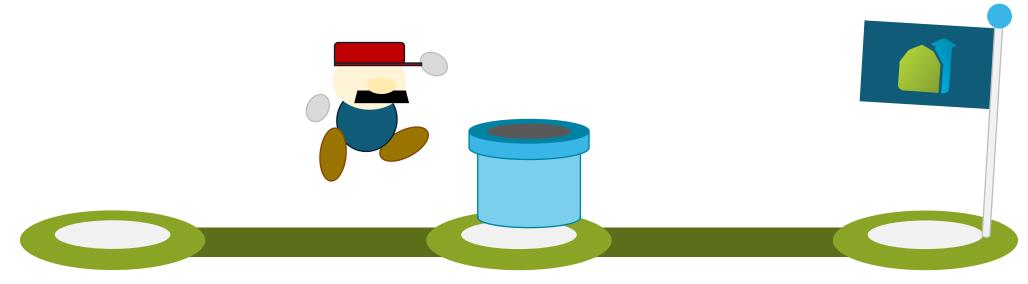
ŀ	∃ 5 •∂	* -				
F	ile Hor	me Inser	t Page Lay	out Formulas	Data Revi	ew
Pas	Copy	at Painter	Calibri B I <u>U</u> +	• 11 • A	_	\$ \$
Ŧ	Clipboard			Font	5	
A1		- I I X	$\sqrt{f_x}$	Туре		
	А	В	С	D	E	
1	Туре	E(g) (keV)	dE(g) (keV)	I(g)/I(g)max (%)	d(I(g)/I(g)max)	
2	Secondary	3133.89	0.07	2.0349	0.2536	
3	Secondary	3150.95	0.06	3.5853	0.4094	
4	Secondary	3693	0.06	3.3915	0.3985	
5	Secondary	3695.8	0.06	6.686	0.792	
6	Secondary	3699.06	0.07	2.8101	0.2977	
7	Secondary	3706.68	0.07	2.5194	0.2803	
8	Secondary	3708.55	0.06	5.1357	0.5664	
9	Secondary	3711.51	0.05	9.3023	1.0769	
10	Secondary	3716.26	0.07	2.4225	0.2748	
11	Secondary	3719.87	0.06	3.1977	0.3881	
12	Secondary	3725.18	0.05	12.5	1.3959	
13	Secondary	3728.39	0.07	2.4225	0.2748	
14	Secondary	3731.92	0.07	1.8411	0.2439	
15	Secondary	3734.9	0.06	3.1008	0.3831	
16	Secondary	3737.85	0.09	0.6783	0.1112	
17	Secondary	3741.25	0.07	1.4535	0.1518	
18	Secondary	3744.12	0.06	4.6512	0.5385	
19	Secondary	3747.21	0.06	6.5891	0.7178	
20	Secondary	3749.13	0.08	1.3566	0.1459	
21	Secondary	3751.18	0.05	10.3682	1.2063	
22	Secondary	3754.52	0.05	8.1395	0.9423	
23	Secondary	3762.95	0.06	7.5581	0.8409	
24	Secondary	3766.02	0.06	6.1047	0.6898	
25	Secondary	3769.59	0.06	4.5543	0.5332	
26	Secondary	3771.78	0.06	3.0039	0.378	
27	Secondary	3774.88	0.08	0.969	0.1243	
28	Secondary	3777.69	0.06	4.7481	0.5439	
	Secondary	3780.57	0.06	5.4264	0.652	
30	Secondary	3786.38	0.06	4.1667	0.4436	
	, Secondary	3788.31	0.07	2.3256	0.2692	
32	Secondary	3791.12	0.05	9.3023	1.0769	
_	Secondary	3794.58	0.07	2.0349	0.2536	

New Web Servers

Replacing current web servers due to 5-year end-of-life

- New servers already present at BNL
- Specifications:
 - 1 CPU: Intel® Xeon® Gold, 28 cores, 2.6 GHz
 - RAM: 384 GB, 12 x 32 GB, DDR4, 2933 MHz, ECC
 - 2 Solid-State Drives (OS): 480 GB, M.2, PCIe NVMe, SSD, Class 40
 - 8 Hard Drives (RAID-6) (Users): 2.4-TB, SAS 12Gbps 10kRPM, 512e 2.5in Hot-Plug
 - 5-year Red Hat OS Subscription and Software Support
 - 7-year ProSupport 7x24 Hardware Technical Support

Containerization


All NNDC webapps have been converted into Docker containers

- Security restricted access to servers and databases
- Portability can be re-created on different machines
- **Robustness** containers can be managed/restarted individually

Currently in use, and will be installed on new web servers

Future Plans

Database APIs

Done	To Do
ENSDF	NSR
EXFOR	CSISRS
ENDF	Atlas

Linking Databases

ENSDF> ENDFAtlas> ENDFNSR> Everything

One-Stop Shop

Seamless transitions across databases & web applications

