Data Rates and Data Reduction Requirements

• Goals of ePIC DAQ

- "zero" global deadtime
- "zero" bias readout
 - This means (in decreasing order of importance):
 - Include all possible signal (Because we want to analyze all collisions AND because we want to have the capability of using the most sophisticated event selection criteria available)
 - > Implies that the reconstruction needs a well-organized event selection & labelling step before analyzing data
 - Include background (Because some apparent background may be signal AND because backgrounds affect the detectors in ways that we may be able to correct for, with study AND because prompt characterization of backgrounds can help the collider give us what we need)
 - > Implies that the reconstruction needs a background elimination step before analyzing clean data
 - Include noise (Because we may be able to distinguish signal from noise better than some simple DAQ algorithm, with study)
 - > Implies that the reconstruction need a noise elimination step before reconstructing cleanest possible data
- Subject to reality
 - Potential electronics limitations
 - ASIC / FEB digitization and serialization limits
 - RDO limitations (~10Gb/sec per RDO)
 - Data volume limitations (~100Gb/sec to compute facilities)
- ePIC DAQ will need technical capabilities for:
 - Software Triggering & Hardware Triggering (Of a sort)
 - Tagging of events (LEDs, pedestal calculation, charge injections etc)
 - Flow control (application of deadtime to ensure data coherency needs)
 - Prescaling (application of arbitrary deadtimes for some subset of detectors)

ePIC Readout Chain

Summary of Channel Counts and Data Flow

Detector Group	Channels						Fiber	DAM	Data	Data
	MAPS	AC-LGAD	SiPM/PMT	MPGD	HRPPD/ MCP-PMT		(single)		Volume (RDO) (Gb/s)	Volume (To Tape) (Gb/s)
Tracking (MAPS)	16B					n/a	3158	35	26	26
Tracking (MPGD)				202k		118	236	5	1	1
Calorimeters	500M		104k			451	902	14	502 —	-> 28
Far Forward		1.4M	253k			247	624	10	15	8
Far Backward	66M	60k	2k			38	518	14	150 -	$\rightarrow 1$
PID (TOF)		7.8M				500	1500	14	31 —	→ 1
PID Cherenkov			320k		140k	1283	2583	32	1275 —	→ 32
TOTAL	16.9B	10.4M	679k	202k	140k	2637	9521	124	2,000	96

New numbers coming out with improvements:

- Correct Thresholds
- Simulation Properties
- Updated Collider Lattice
- Distributions of hits within detectors
- More realistic ASIC behavior
- Better understanding of software triggering scheme

See Elke's talk and ePIC background group wiki

For now, these are last summer's numbers

- Calorimeters / TOF
 - ASIC behavior (e.g. reads out data for channels with no hits)
- TOF / Calorimeters / MPGDs
 - Feature finding reduction due to charge sharing, sampled time durations
- dRICH
 - Time window relative to bunch crossing
 - SiPM Annealing
 - Software trigger
- Far Backward (Lumi Detectors)
 - Rate = 81ch * 10bit * 100MHz ~ 80 Gb/s
 - Summarize deposited energy each bunch crossing (~1Gb/s)
 - $_{\odot}$ (or) Histogram deposited energy per channel for all 1160 bunches over ~100 bunch rotations
- Far Backward Low Q trackers
 - Software Collision Trigger
 - Prescale acceptable (arbitrary deadtimes...)

Low Q Tracker

Triggering To Do

- Technical Issues
 - How is the communication handled?
- Trigger Issues
 - What are the algorithms, and what detectors go into the algorithms?
 - dRICH
 - Does not need to be collision trigger. Trigger only needs to ensure that there is a real hit in the detector
 - Low Q Tracker

Collision Trigger expectedCould use prescale instead

- Collision detector detector?
 - Do we need one?
 - Can we construct one?
 - What would it look like?

Decision Signal not yet specified

- 100Gb Ethernet (switched)?
- Dedicated "Trigger" FELIX Boards?
- Hardware/Software Signals routed through GTU?

Data Reduction To Do List for TDR

Discussion...

EPIC Detector Scale and Technology Summary:

1/	1	0/	2	0	2	3	
-/	-	\cup_{i}	_	U	_	<u> </u>	

Detector System	Channels	RDO	Gb/s (RDO)	Gb/s (Tape)	DAM Boards	Readout Technology	Notes
Si Tracking: Inner Barrel (IB) Outer Barrel (OB) Backward Disks (EE) Forward Disks (HE)	16B pixels	136* 440* 410* 410*	26	26	4* 11* 10* 10*	ITS-3 sensors ITS-2 staves / w improvements	RDO corresponds to number of VTRX+ Assuming each VTRX+ populates only a single TX/RX pair. If data volume is high, they can support 4 TX fibers which would increase FELIX counts
MPGD tracking: Electron Endcap Hadron Endcap Inner Barrel Outer Barrel	16k 16k 30k 140k	8 8 30 72	1	0.2	1 1 1 2	uRWELL / SALSA uRWELL / SALSA MicroMegas / SALSA uRWELL / SALSA	64 Channels/Salsa, up to 8 Salsa / FEB&RDO 256 ch/FEB for MM 512 ch/FEB for uRWELL
Forward Calorimeters: LFHCAL HCAL insert ECAL W/SciFi HCAL ECAL SciFi/PB ECAL ASTROPIX Backward Calorimeters: NHCAL ECAL (PWO)	63,280 8k 16,000 7680 5,760 500M pixels 3,256 2852	74 9 64 9 32 230 18 15	502	28	2 1 2 1 1 5 1 1	SiPM / HG2CROC SiPM / HG2CROC SiPM / Discrete SiPM / HG2CROC SiPM / HG2CROC Astropix SiPM / HG2CROC SiPM / Discrete	Assume HGCROC 56 ch * 16 ASIC/RDO = 896 ch/RDO 32 ch/FEB, 16 FEB/RDO estimate, 8 FEB/RDO conserve. HCAL 1536x5 *HCAL insert not in baseline Assume similar structure to its-2 but with sensors with 250k pixels for RDO calculation. 24 ch/feb, 8 RDO estimate, 23 RDO conservative
Far Forward: B0: Crystal Calorimeter 4 AC-LGAD layer 2 Roman Pots 2 Off Momentum ZDC: Crystal Calorimeter 20 Silicon pad layer 3/1 Silicon pad layers HCAL	135 606,208 524,288 292,032 756 60,480 134,640 57,600	1 30 64 36 1 28 59 28	15	8	1 1 2 1 1 2 1	SiPM AC-LGAG / EICROC AC-LGAD / EICROC AC-LGAD / EICROC APD HGCROC as per ALICE FoCal-E HGCROC as per ALICE FoCal-E SiPM	4 layer x 37 module x 4 EICROC x 1024 ch 2 stations x 2 layer x 32 module x 4 EICROC x 1024 ch 2 stations x 2 layer x 18 module x 4 EICROC x 1024 ch 20 Low granularity layers 3 High granularity layers + Veto Layer 3 blocks
Far Backward: Low Q Tagger 1 & 2 Low Q Tagger 1+2 Cal 2 x Lumi PS Calorimeter Lumi PS tracker High Rate Lumi Cal	66M pixels 144 1750/48 60k 81	24 1 1 10 2	150	1	10 1 1 1 1	Timepix4 SiPM (SiPM/HG2CROC) or(PMT/FLASH) AC-LGAD: FCFD or EICROC (strip) SiPM	2 tagger x 4 layer x 3 board x 12 timepix4 x (448x512) pix (up to 20 TX fiber / RDO due to high rate)
PID-TOF: Barrel Endcap	2.2M 5.6 M	288 212	31	1	8 6	AC-LGAD: FCFD or EICROC (strip) AC-LGAD: EICROC (pixel)	bTOF 128 ch/ASIC, 64 ASIC/RDO eTOF 1024 pixel/ASIC, 24-48 ASIC/RDO (41 ave)
PID-Cherenkov: dRICH pfRICH DIRC	317,952 69,632 69,632	1242 17 24	1240 24 11	13.5 12.5 6	30 1 1	SiPM / ALCOR HRPPD / EICROC (pixel) MCP-PMT (or HRPPD)	Worse case after radiation. Includes 30% timing window. Requires further data volume reduction software trigger