
Benchmark Development Tutorial:
Overview
Dmitry Kalinkin

University of Kentucky

01/09/2024
1



Goals for benchmarking

Setting up analysis software to be automatically periodically run should allow us
to:

» Detect software regressions – allow for faster development, ease software
upgrades

» Collaborative development – publish things to avoid unnecessary duplicate work
» Up to date calibration constants, ML artifacts
» Analysis archival and preservation, validation against beam test results
» Synergy with the simulation campaign production

There are some upfront costs in setup of the automation.

2



Testing and benchmarking in ePIC

» Development tests for epic
geometry and for EICrecon

» Detector benchmarks

» Physics benchmarks

required contribution,
strict standards,
early feedback
low statistics

voluntary contribution,
relaxed standards,
late feedback,
large statistics

3



ePIC benchmarks on eicweb

Now available for contribution on GitHub, without an eicweb account:

» https://eicweb.phy.anl.gov/EIC/benchmarks/detector_benchmarks
https://github.com/eic/detector_benchmarks ← contribute here

» https://eicweb.phy.anl.gov/EIC/benchmarks/physics_benchmarks
https://github.com/eic/physics_benchmarks ← contribute here

We need more and better benchmarks to be added. We hope you can help!

4

https://eicweb.phy.anl.gov/EIC/benchmarks/detector_benchmarks
https://github.com/eic/detector_benchmarks
https://eicweb.phy.anl.gov/EIC/benchmarks/physics_benchmarks
https://github.com/eic/physics_benchmarks


Defining automation

The user experience on eicweb is not ideal. Defining analysis in .gitlab-ci.yml is
a bit involved and doesn’t allow to test changes locally.

Pilot project is to use Snakemake for analysis workflow definition.

» allows to run small and large workflows locally
» can submit batch jobs on computing grids (HTCondor, Slurm, ...)
» less confusing than shell scripts
» caches intermediate steps – ideal for quick iteration development

Try it in Exercise 2 and let us know what you think!

5



The Tutorial

https://eic.github.io/tutorial-developing-benchmarks/

Online support ∼collab-mtg-jan24-tutorials during Jan 9 2024,
∼Helpdesk after that (make sure to refernce the tutorial)

6

https://eic.github.io/tutorial-developing-benchmarks/
https://chat.epic-eic.org/main/channels/collab-mtg-jan24-tutorials
https://chat.epic-eic.org/main/channels/helpdesk


Further work

An example of state of art benchmark with Snakemake and eicweb is
https://github.com/eic/physics_benchmarks/tree/master/benchmarks/
diffractive_vm
» Capable of campaign processing, and works on CI with online simulation (a
“smoke test”)

» You should be now able to understand how it’s setup!

Not covered:
» Artifacts upload (write user-facing output to results/) – visual results
» common_bench - numerical benchmark results, pass/fail conditions

7

https://github.com/eic/physics_benchmarks/tree/master/benchmarks/diffractive_vm
https://github.com/eic/physics_benchmarks/tree/master/benchmarks/diffractive_vm


Backup

8



epic geometry tests

https://github.com/eic/epic/pulls

» Compile with gcc and clang

» Run TGeo and Geant4 overlap
checks for all configurations

» Run ACTS checks

» Produce GDML, ROOT(TGeo)
geometry files

» Render dawn views

» Trigger running of detector and
physics benchmarks on eicweb,
status is reported back

9

https://github.com/eic/epic/pulls


epic geometry tests

https://github.com/eic/epic/pulls

» Compile with gcc and clang

» Run TGeo and Geant4 overlap
checks for all configurations

» Run ACTS checks

» Produce GDML, ROOT(TGeo)
geometry files

» Render dawn views

» Trigger running of detector and
physics benchmarks on eicweb,
status is reported back

9

https://github.com/eic/epic/pulls


EICrecon tests

https://github.com/eic/EICrecon/pulls
» Compile with gcc and clang

» Static analysis and code style
(clang-tidy, IWYU)

» With AddressSanitizer and
UBSanitizer

» Run unit tests

» Run simulation and reconstruction
for gun and DIS (100 events)

» Run JANA-based benchmarks

» Upload artifacts (EDM4hep sim,
EDM4eic reco, jana factory
parameters, janadot, coverage
report, doxygen)

» Compare to reco EDM4eic to
artifact from the base branch

10

https://github.com/eic/EICrecon/pulls


EICrecon tests

https://github.com/eic/EICrecon/pulls
» Compile with gcc and clang

» Static analysis and code style
(clang-tidy, IWYU)

» With AddressSanitizer and
UBSanitizer

» Run unit tests

» Run simulation and reconstruction
for gun and DIS (100 events)

» Run JANA-based benchmarks

» Upload artifacts (EDM4hep sim,
EDM4eic reco, jana factory
parameters, janadot, coverage
report, doxygen)

» Compare to reco EDM4eic to
artifact from the base branch

10

https://github.com/eic/EICrecon/pulls

	Backup

