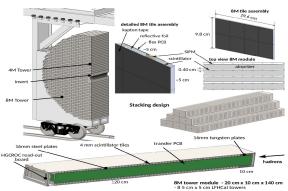
Backward Hadronic Calorimeter DSC report

Leszek Kosarzewski

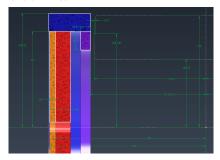
The Ohio State University

ePIC Collaboration meeting, ANL 12.1.2024

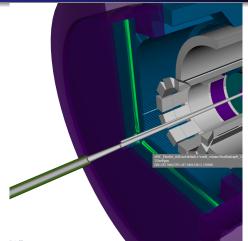

Outline

- Backward HCal design
- Geometry implementation in dd4hep
- Backward-going jets
 - Low energy neutrons in jets
 - Low energy neutron detection
 - Position resolution
- Vector meson studies
- Testing and work by university groups
- Summary

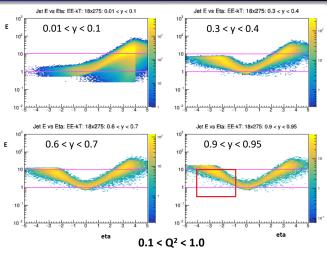
Introduction - backward HCal (nHCal)


Requirements: https://eic.jlab.org/Requirements/

A future backward HCal shall provide functionality of a tail catcher for the high resolution e/m calorimeter in electron identification, as well as for jet kinematics measurement at small Bjorken x

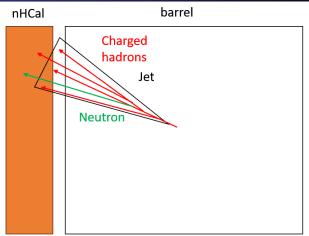

- Design considerations:
 - High efficiency for low energy neutron detection
 - Good spatial resolution to distinguish neutral/charged hadrons
- Follow similar solutions as Forward HCal instead of STAR EEMC megatiles
 - \bullet Due to required quick dissasembly of STAR the EEMC megatiles are no longer an option
 - Can make adjustments to Forward HCal (LFHCAL) design, but no need to reinvent the wheel

- Sampling calorimeter with 10 alternating layers, $2.4\lambda^0$ (red), similar to Belle-II KLM:
 - non-magnetic steel 4 cm
 - plastic scintillator 4 mm to be adjusted
- Light collection by SiPM:
 - Candidate (to verify): S14160-1315PS https://www.hamamatsu.com/eu/en/product/optical-sensors/mppc/mppc_mppc-array/S14160-1315PS.html
- Electronics to follow solutions of other calorimetry systems HGCROCv3
- FEEs placed in front of nHCal

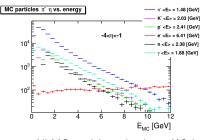

- nHCal decoupled from the magnetic steel ⇒ more flexibility
- Support structures design required for TDR

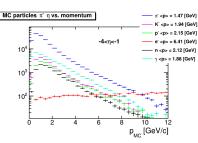
Geometry implementation in dd4hep

- A simplified version with STAR EEMC tiles already present in the main ePIC branch and included in the simulation campaigns up to November, stainless steel as an absorber
 - Good enough for basic checks
- \bullet Forward HCal-type geometry with $10~\mathrm{cm}\times10~\mathrm{cm}$ tiles implemented for December campaign
- Flux return steel surrounding nHCal (purple) in private branch ready for commit into main


Low energy neutrons in jets

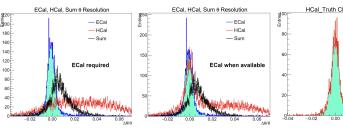
Brian Page, BNL

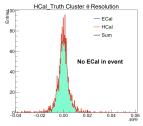

- Backward-going jets coming from low-x partons and high y events
 - Interesting physics!
- See more in presentation by Brian: https://indico.bnl.gov/event/20679/


Neutral hadron reconstruction in a jet

- Jets reconstructed with charged hadron showers
- Missing a neutron will degrade the energy resolution of jets
- Need good low energy neutron:
 - detection efficiency
 - position resolution to distinguish from charged hadrons
- Need track-cluster matching to be able to see impact on neutrons vs. charged hadrons within jets - Required for TDR

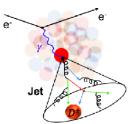
Particle distributions going into nHCal



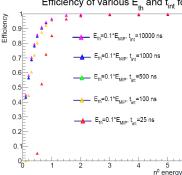


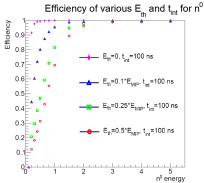
- All MC particles going into nHCal direction
- ullet Mean energy (total) of neutrons $< E> = 2.38 \ {
 m GeV}$, lowest $E=1 \ {
 m GeV}$
- Mean momentum of neutrons $= 2.12 \,\mathrm{GeV/c}$, lowest $p = 0 \,\mathrm{GeV}$

12.1.2024 L. Kosarzewski


Alexandr Prozorov, CTU

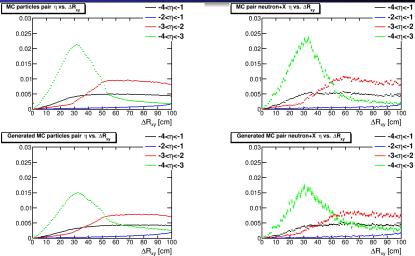
- 50% of neutrons scatter in backward EMCal
- Scattered neutron may fall out of a jet reconstruction cone
- We need to study this in coordination with Jet-HF PWG
- Work in progress on software compensation and neutron reconstruction with machine learning
- Following a study by LFHCAL group: https://arxiv.org/abs/2310.04442

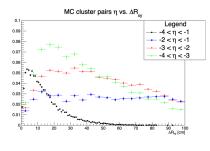


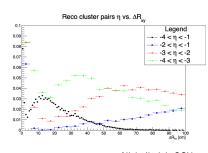

Neutron detection efficiency

Integration time dependence

Efficiency of various E_{th} and t_{int} for n⁰

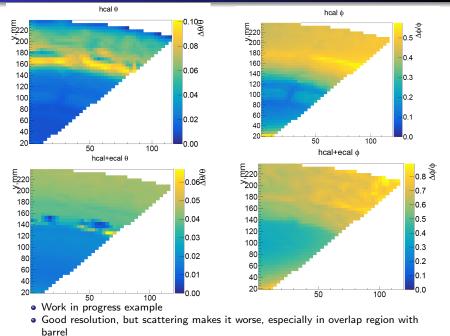

Threshold dependence

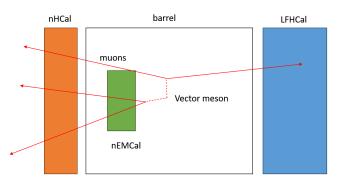

Sam Corey, OSU


- Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th} , $t_0 = 0$
- Checked with simulation only no digitization
- E_{MIP} is 0.75 MeV per layer
- E_{th} has the biggest impact
- 100 ns is good enough, but lower energy neutrons may need longer times
- ullet 60% efficiency for $E=300~{
 m MeV}$ neutrons $E_{th}=0.1 imes E_{MIP}=75~{
 m keV}$ and $100~{
 m ns}$

Distance between particle projections in nHCal

- Resolution of 20 cm at high η good enough to separate most particles
- ullet Can be even larger at smaller η
- Generated particles = primaries only
- \bullet Distributions normalized over the entire range, but zoomed in $0 < \Delta R_{xv} < 100~\mathrm{cm}$



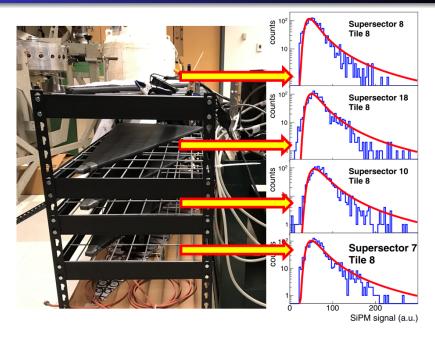

Nick Jindal, OSU

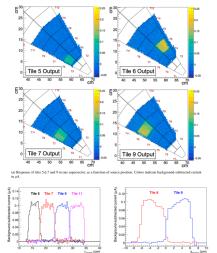
- Similar results for clusters, qualitatively consistent with MC particle straight line projections
- \bullet Resolution of 20 $\rm cm$ seems good enough, peak at 30 $\rm cm$ for reco clusters (20 $\rm cm$ for MC)
- Hit merging across layers was disabled here
 - Clusters from different layers overlap in XY, cause excess around 0

Position resolution study

L. Kosarzewski

- Important for high y or low- p_T vector mesons depends on type
- Increases acceptance
- Need projected MIP tracks and MIP signals in backward HCal and EMCal
 - μ/π distinction important, position resolution...
- Performance estimate required for TDR


Testing and work by university groups


- Backward HCAL construction project well-matched for university group
 - subsidized shops with CNC, etc
 - characterization/testing with simple CAMAC systems etc
 - student-scale physical work

Tile characterization with cosmics

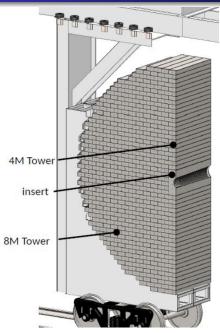
Uniformity, isolation characterization with source & translation table

Conclusions

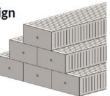
- Presented basic concept for backward HCal for ePIC
- Simplified geometry already in simulation campaign:
 - for STAR EEMC geometry+extensions until November
 - for LFHCAL-style starting from November
- Work in progress on neutron detection with machine learning
- Estimated position resolution and distances between particles
 - ullet 10 cm imes 10 cm is a good choice
- Testing and other work well suited to university groups
- Growing Detector Subsystem Collaboration: OSU, CTU, UNH, BNL

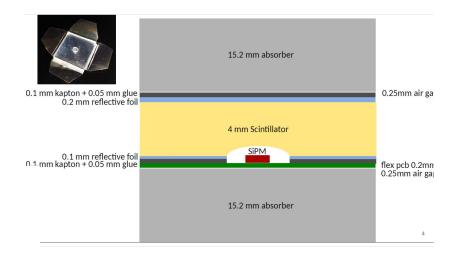
BACKUP

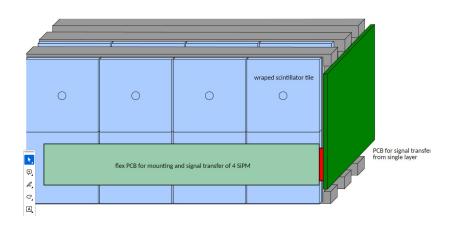
Dataset - simulation campaign

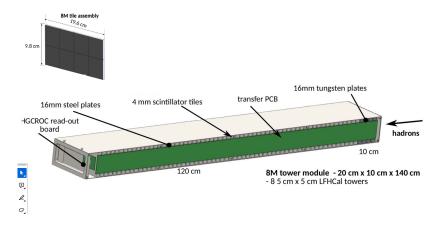

- Motivation:
 - Check distance between pairs of MC particles projected to nHCal surface
 - Check distance between neutrons and other particles
- Analysis of data from the simulation campaign:
 - $18 \times 275 \text{ GeV } e + p \text{ collisions}, 0 < Q^2 < 1 \text{ GeV}^2$
 - 1.3M SIDIS events simulated with PYTHIA
 - Brycecanyon geometry

Listing: Files selection

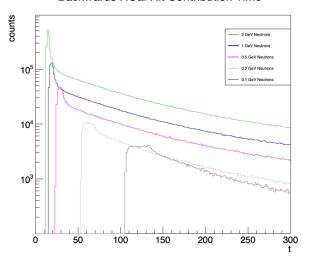

 $S3/eictest/EPIC/FULL/23.06.1/epic_brycecanyon/SIDIS/pythia6/ep_18x275/hepmc_ip6/noradcor/ep_noradcor.18x275_q2_0_1*edm4hep.root$

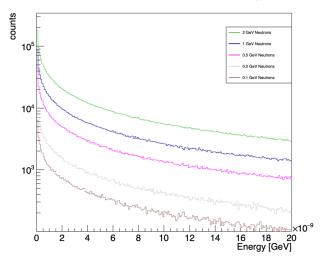

- Particle cuts:
 - primaries with start vertex z > -395 cm (in front of HCal)
 - \bullet secondaries with start vertex $z>-300~\mathrm{cm}$ (in front of HCal, after EMCal)
 - cut out e, γ, π^0, η
- Projected MC particles using straight line along their momentum direction to nHCal surface (simple check - neglects B field)


LFHCal design



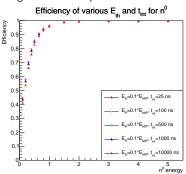
Stacking design

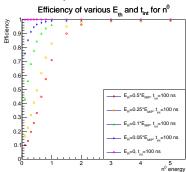




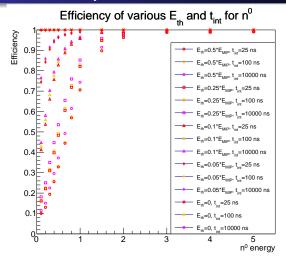
Backwards HCal Hit Contribution Time

• Neutrons at lower energy are delayed

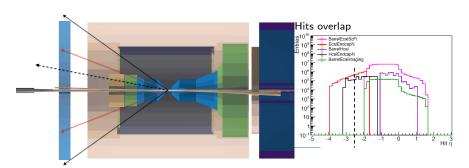

Backwards HCal Hit Contribution Energy



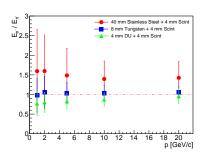
Neutron detection efficiency


Integration time dependence

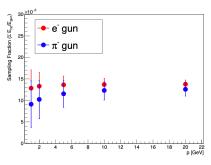
Threshold dependence


- ullet Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th}
- Checked with simulation only no digitization
- *E_{MIP}* is 0.75 MeV per layer
- Eth has the biggest impact
- $\bullet~100~\mathrm{ns}$ is good enough, but lower energy neutrons may need longer times
- to starting from the first hit

- Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th}
- E_{MIP} is 0.75 MeV per layer
- $E_{th} = 0.1 \times E_{MIP} = 75 \, \mathrm{keV}$ and 100 ns provides good performance
- Need lower threshold and longer signal integration for better performance at low energy

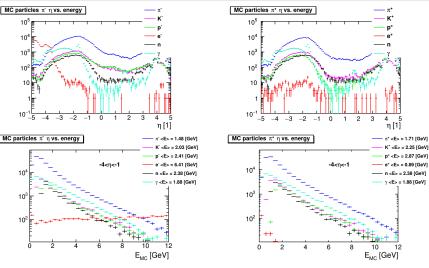

Overlap of calorimeters

Acceptance

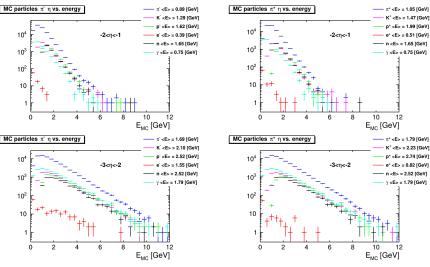


- \bullet Acceptance $-3.5 < \eta < -1.27$ TO BE CHECKED
- Overlaps with backward and barrel EMcals
- Scattering may be important in these overlap regions

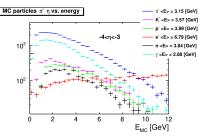
Electron/hadron response

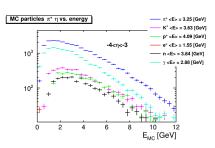


40 layers of 40 mm stainless steel+4 mm scintillator (for cross-check)

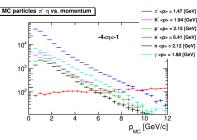

- Current design provides compensation
- ullet Sampling fraction pprox 1%
 - ullet This means a $1\,\mathrm{GeV}$ hadron leaves similar signal to a $E_{MIP}=7.5\,\mathrm{MeV}$ across 10 layers
- Tungsten provides good performance
 - May add a few layers in front like for LFHCAL

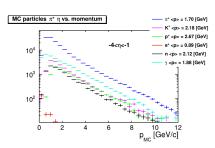
Particle distributions - eta and energy

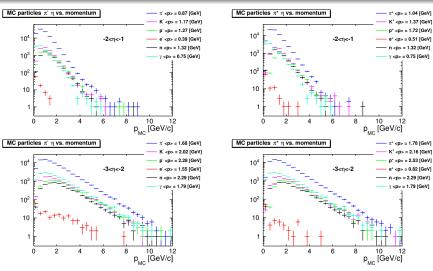


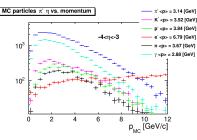

- All MC particles hitting nHCal
- Mean energy of neutrons $< E > = 2.38 \,\mathrm{GeV}$
- Large number of high E e - from beam?

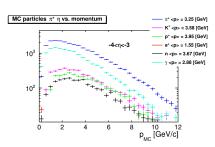
Particle distributions - Energy vs. eta




- All MC particles hitting nHCal
- Mean energy of neutrons < E $>_{-2<\eta<-1}=$ 1.65 $\rm GeV$ and < E $>_{-3<\eta<-2}=$ 2.52 $\rm GeV$


- All MC particles hitting nHCal
- Mean energy of neutrons $\langle E \rangle_{-4 < n < -3} = 3.84 \, \mathrm{GeV}$



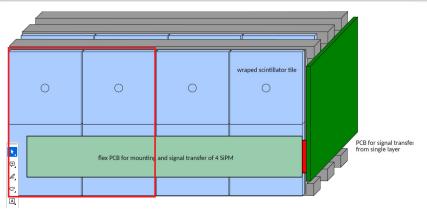

- All MC particles hitting nHCal
- Mean momentum of neutrons $= 2.12 \,\mathrm{GeV/c}$

Particle distributions - Momentum vs. eta

- All MC particles hitting nHCal
- Mean momentum of neutrons < p $>_{-2<\eta<-1}=$ $1.32~\rm{GeV/c}$ and < p $>_{-3<\eta<-2}=$ 2.29 $\rm{GeV/c}$

- All MC particles hitting nHCal
- Mean momentum of neutrons < $p>_{-4<\eta<-3}=3.67~{\rm GeV/c}$

Energy


- 67				
η	$< E > { m GeV}$ inclusive n	$<$ E $>$ ${ m GeV}$ primary n		
$-4 < \eta < -1$	2.38 GeV	$2.38\mathrm{GeV}$		
$-2 < \eta < -1$	$1.65\mathrm{GeV}$	$1.65~{ m GeV}$		
$-3 < \eta < -2$	$2.52\mathrm{GeV}$	$2.52\mathrm{GeV}$		
$-4 < \eta < -3$	$3.84~{ m GeV}$	$3.84~{ m GeV}$		

Momentum

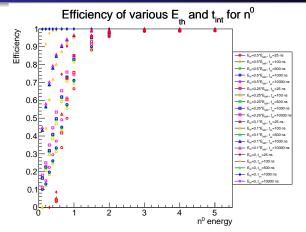
η	$<$ p $> { m GeV/c}$ inclusive n	$<$ p $> { m GeV/c}$ primary n
$-4 < \eta < -1$	$2.12\mathrm{GeV/c}$	$2.12\mathrm{GeV/c}$
$-2 < \eta < -1$	$1.32\mathrm{GeV/c}$	$1.32\mathrm{GeV/c}$
$-3 < \eta < -2$	$2.29\mathrm{GeV/c}$	$2.29\mathrm{GeV/c}$
$-4 < \eta < -3$	$3.67~{ m GeV/c}$	$3.68~{ m GeV/c}$

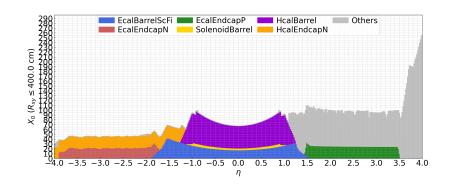
• Secondary neutrons have < E $>_{-4<\eta<-1}=1.0~{\rm GeV}$ and < p $>_{-4<\eta<-1}=$ 0.27 ${\rm GeV}$ - constant vs. η

Design option 1 - LFHCAL style

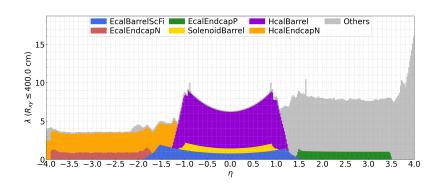
- SiPM on tile with 5 cm × 5 cm tiles
- \bullet Use 2x2 5 $\mathrm{cm} \times 5 \; \mathrm{cm}$ tile modules similar to 4M module of LFHCAL
- \bullet Connect outputs of 2x2 tile module to integrate the signal and create an effective $10~\rm cm \times 10~\rm cm$ segment
- Can readout each layer independently or integrate 5 forward and 5 backward layers to save costs
- No need to optically isolate tiles, only the whole module

Design option 2 - STAR FCS style




- $\bullet~10~\mathrm{cm}\times10~\mathrm{cm}$ tile modules similar to STAR FCS
- Light collection with SiPMs through WLS plate (middle)
 - Collects light from all 10 layers
 - Maybe can isolate WLS plate into 2 segments to collect light from 5 forward and 5 backward layers independently

Design option	light collection	features	readout
1 SiPM on tile LFHCAL style	SiPM on tile	light collection closer to source	various configurations possible eg: each layer independently 2x2 tile signal adding
2 WLS plate to SiPM STAR FCS style	SiPM via WLS plate	collects light from all layers better light propagation	combined from 2x2 tile segment integrated cross layers 5+5 layer configuration possible


- Comparison in progress
- $\approx 21k$ channels with independent readout from each of 10 layers (cost 1.76*M*\$)
 - Savings of factor of 5 on electronics ($\approx 4k$ channels) if integrated 5 front and 5 back layers (cost 1.53M\$)
 - ullet Savings of factor of 10 on electronics (pprox 2.1k channels) with WLS plates (cost 1.5M\$)

- ullet Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th}
- \bullet E_{MIP} is 0.75 ${
 m MeV}$ per layer
- \bullet $\textit{E}_{\textit{th}} = 0.1 \times \textit{E}_{\textit{MIP}} = 75 \ \rm{keV}$ and $100 \ \rm{ns}$ provides good performance
- Need lower threshold and longer signal integration for better performance at low energy

- $\sim 24X_0$ for backward HCal
- Scintillator tiles do not cover the same volume as steel absorber yet

- $\bullet \sim 2.4 \lambda_0$ for backward HCal
- Scintillator tiles do not cover the same volume as steel absorber yet