Far-Forward Reconstruction using ePIC DD4HEP + EICRecon

Alex Jentsch (BNL)

ePIC Exclusive, Diffractive, and Tagging PWG Meeting January 10th, 2024

General overview of geometry

• All detectors have full geometry implementation...but...

- Vacuum system is not remotely finalized this affects especially the ZDC performance.
- Anything done with the ZDC *now* will likely need another look after the material is updated (1-2 months).
- No real support structure for FF detectors but realistic material layers included to study impact of material budget on tracking.
- Magnetic fields are only "official" for primary beam energies (18x275, 10x100, 5x41) we have other configurations in the compact files...but they need to be used with care.
- B0 magnetic field map is *there*, but not in the official main branch for now.

Reconstruction – Roman Pots

• Matrix method is used for reconstruction.

- Matrix is dependent on the magnets has to be recalculated for any changes/abnormal circumstances.
- Beam energy used for simulations MUST be given to ElCrecon***
 - ElCrecon/src/algorithms/fardetectors/MatrixTra nsferStaticConfig.h

See "ForwardRomanPotRecParticles" branch.

***we need to automate this – has not proven to be straight-forward previously.

	#pragma once
	<pre>namespace eicrecon {</pre>
/	<pre>struct MatrixTransferStaticConfig {</pre>
	<pre>float partMass {0.938272}; float partCharge{1}; long long partPDG {2212};</pre>
	<pre>// Defaults here are for RPOTS double local_x_offset {0.0}; double local_y_offset {0.0}; double local_x_slope_offset{-0.00622147}; double local_y_slope_offset{-0.0451035}; double crossingAngle {0.025}; double nomMomentum {275.0}; std::vector<std::vector<double>> aX = {{2.102403743, 29.11067626},</std::vector<double></pre>
	<pre>double hit1minZ{0}; double hit1maxZ{0}; double hit2minZ{0}; double hit2maxZ{0}; std::string readout{""};</pre>

Reconstruction – Off-Momentum

- Similar to Roman pots uses transfer matrix
 - Matrix is dependent on the magnets has to be recalculated for any changes/abnormal circumstances.
 - Beam energy used for simulations MUST be given to ElCrecon***
 - ElCrecon/src/algorithms/fardetectors/MatrixTransf erStaticConfig.h
 - More complicated since you have to use the momentum of the "spectator" you are interested in.

Example: e+d 10x110 GeV/n \rightarrow nomMomentum = 110.0

See "ForwardOffMRecParticles" branch.

***we need to automate this – has not proven to be straight-forward previously.

#pragma once namespace eicrecon { struct MatrixTransferStaticConfig { partMass {0.938272}; float partCharge{1}; float long long partPDG {2212}; // Defaults here are for RPOTS double local_x_offset **{0.0};** double local_y_offset $\{0.0\};$ double local_x_slope_offset{-0.00622147}; double local_y_slope_offset{-0.0451035}; double crossingAngle {0.025}; {275.0}; double nomMomentum std::vector<std::vector<double>> aX = {{2.102403743, 29.11067626}, {0.186640381, 0.192604619}}; std::vector<std::vector<double>> aY = {{0.0000159900, 3.94082098}, {0.0000079946, -0.1402995}}; double hit1minZ{0}; double hit1maxZ{0}; double hit2minZ{0}; double hit2maxZ{0}; std::string readout{""};

B0 Tracker

- In principle works out of the box.
 - See "ReconstructedChargedParticles" branch.
 - Uses ACTS, should function just like analysis with main tracker.
 - For now, still using constant dipole + quad field – fieldmap is available and will be the "standard" soon.

B0 Field Map

e-beam @ +34 mm and hadrons @ -126 mm (neglecting 25 mrad angle) in this model

Z=0 is center of the magnet @ 6.4m

- X = -126 mm, y = 0 mm (before rotation and shift to fit along beamline).
 - By field strength along the hadron beam.
 - Gaussian field shape!

Left to right, top to bottom – increasing Z (IP to center of magnet)

By_field_strength_z_-45_cm

By_field_strength_z_-30_cm

By_field_strength_z_-15_cm

By_field_strength_z_-35_cm

By_field_strength_z_-40_cm -20 -300 5 X coordinate [cm])

0 5 X coordinate [cm])

BO Field Man

-10

-31

By_field_strength_z_-25_cm

By_field_strength_z_-20_cm

BO Field Map

Left to right, top to bottom – increasing Z (IP to center of magnet)

By_field_strength_z_20_cm

By_field_strength_z_-5_cm

By_field_strength_z_10_cm

By_field_strength_z_25_cm

By_field_strength_z_0_cm

By_field_strength_z_15_cm

By_field_strength_z_30_cm

B0 Field Map

By_field_strength_z_0_cm Center of magnet

 Field seen by protons is pT/angle dependent – will add an additional smearing dependence on position within the magnetic field.

B0 EMCAL and ZDC EMCAL

- Energy information is present, clustering is still simplistic/not present.
- Acceptances and interaction with material realistic, so doing a rudimentary clustering should be fairly simple.

TTreeReaderArray<float> b0_cluster_x = {tree_reader, "B0ECalClusters.position.x"}; TTreeReaderArray<float> b0_cluster_y = {tree_reader, "B0ECalClusters.position.y"}; TTreeReaderArray<float> b0_cluster_z = {tree_reader, "B0ECalClusters.position.z"}; TTreeReaderArray<float> b0_cluster_energy = {tree_reader, "B0ECalClusters.energy"}; //deposited energy in cluster

ZDC HCAL

- SiPM-on-Tile HCAL HEXSPLIT available, but not clear if part of main repo.
- Material interactions are all what they should be, but reconstruction may still be a problem.
 - Following up with ZDC experts and will report back soon.

Setting up the environment (assuming Mac + Docker)

Very helpful tutorial page: https://eic.github.io/tutorial-jana2/aio/index.html

- Start eic-shell, and make sure to upgrade the container. <a>-/eic-shell --upgrade
- Once in eic-shell, setup the environment.
- Now, let's go ahead and make a test sample with the particle gun.

npsim --compactFile \${DETECTOR_PATH}/epic_ip6.xml --steeringFile ddsim_steer_FF_v2.py

The filename inside the Python steering file is intentional – **naming it [name].edm4hep.root** puts the output into the PODIO format which ElCrecon **requires.**

<u>This will take a little more than an hour to run (100 events), and produce a ~100MB output file.</u>

source /opt/detectors/setup.sh

Now for the ElCrecon part

Very helpful tutorial page: https://eic.github.io/tutorial-jana2/aio/index.html

ElCrecon part:

- Clone the ElCrecon repo.
- Now, perform the compilation.
- Then, source your installation (assuming you're already in the ElCrecon directory).
- Now, you can run ElCrecon with your test input file.
 - It will produce an output file with the name you specify, but if you don't supply an output file, it will produce a file with the default name of "podio_output.root".

git clone https://github.com/eic/EICrecon

source ./bin/eicrecon-this.sh

eicrecon [file].edm4hep.root Ppodio:output_file=eicrecon_out.root

Want to do some analysis?

- I tried to make your life easy:
 - <u>https://github.com/ajentsch/exclusive_PWG_analysis</u>
- Some basic analysis code which can the EICRecon output and produce ROOT histograms.
 - You can of course add what you want.
 - This is not a repo for anyone to push to it's just provided as a starting point for people needing a starting point.

Other Tasks Needing Attention

- Solve pass-through issues for event-level information to ElCrecon (e.g. beam energy/species).
- Add/complete benchmarks for various final states for purposes of evaluating impacts of various changes to geometry/reconstruction.
- Solve remaining issues related to reconstruction, with real time feedback from users on needed information in output branches (e.g. ACTS reconstruction specifying which detector subsystem produced the track).
- Evaluate impacts of various backgrounds on specific observables and discuss mitigation strategies.
- Standardize some basic analysis tools for common observables (e.g. t-reconstruction), and create an analysis repository for them to expedite the starting of analyses for others in the future.

Discussion