ePIC Collaboration Meeting - Jan 2024 (ANL)

AstroPix v3

Manoj Jadhav Argonne National Laboratory

Jan 10, 2024

AstroPix Developments

<code>AstroPix v1</code> - 0.45 cm \times 0.45 cm chip

- 18×18 pixel matrix, 175 µm pitch
- Tested for analog output

AstroPix v2 - 1 \times 1 cm2 chip (MPW)

- 35×35 pixel matrix, 250 µm pitch
- Row/Column hit identification
- Analog + digital output

AstroPix v3 Specifications

AstroPix v3

- 2×2 cm² full-size chip with 35×35 pixel matrix
- 300 µm pixel size, 500 µm pixel pitch
- Increased spacing between the outer pixel nwell and the chip edge
- Timestamp clock 2.5MHz, ToT clock 200 MHz
- 10-byte data frame per hit
- Chip-generated injection signal
- The first 3 columns are implemented with PMOS amplifier

&

AstroPix v3 Measurements

Full-size chip (ongoing testing)

- Sensor characterization
 - IV/CV measurements
 - TCT measurements
- Test bench validation and optimazation
- FTBF testbeam performance studies
- Active and passive irradiation ~10¹⁵ n_{equivalent}/cm²
- Quad-chip readout (under testing) for NASA's hosted payload mission (A-Step) (Taylor's talk)
- Integration with Pb/SciFi (Henry's talk)

IV measurements for different versions

APXV3 W02S09 at 2-20kHz and W08S12 at 2-10kHz CV

AstroPix v3 Results

Test Bench Measurements

- Injection voltage scan shows that the analog and digital ToT agree well
- The energy resolution of 5.6% is measured using an injected pulse
- Noise scan shows <1% of noisy pixels
 resolves issue with noisy pixels observed with v2
- Noisy pixels can be masked by disabling the comparator

AstroPix v3 Results

Source Scan Measurements

Ba133, 30min, ~8 nCi

Ba13

32

30

28

26

24

22

20

18

16

14

12

10

0 2

- Am241, 10min, ~106 nCi
- 200 mV threshold, delta(TS)<=1
- First 3 cols (PMOS) disabled
- Ba133, 5min, ~8 nCi, enabling PMOS amplifier col

10²

10¹ 101

- higher hit rate in PMOS cols

14 16 18 20 22 24 26 28 30 32 34

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Ba133 - 93.6% of hits paired

8 10 12 14 16 18 20 22 24 26 28 30 32 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Mean ToT distribution

AstroPix v3 TestBeam

Participants: Jihee Kim, Maria Zurek, Manoj Jadhav, Jessica Metcalfe

AstroPix v3 TestBeam Results

120 GeV Proton Low intensity beam

- 120 GeV Proton
 - 5000 protons/spill
 - 4.7 mm \times 4.8 mm beam spot
- Data acquisition
 - Total 8 hours
 - 300 mV threshold
 - HV bias voltage 150 V
- Total 37,472 raw events
 - 96.67 % of events were decodable
 - 44,742 pixels* were fired
 - Among 91.1 % of active pixels, 91.02 % of pixels were fired
- Uniform pixel response for Minimum Ionizing Particle

*Matching hits with exact time timestamp + ToT matching

Software and Firmware Development

SW led by N. Striebig (KIT) and A. Steinhebel (GSFC), FW led by R. Leys and N. Striebig (KIT)

- FW-driven SPI readout to reduce deadtime
 - The self-trigger readout when there is data in buffers without SW check
 - Sensor data frame detection, IDLE discard, Tagging/reframing, routing to single Readout Buffer
- FW Scale-ability
 - Read through the daisy chain in FW rather than SW
 - Up to 20 daisy-chained SPI inputs have their own interfaces, which feed into the global buffer
- SW speedup to match FW
 - Reduce the chance of incomplete data return
 - Speed-up in analysis scripts, esp. when probing every pixel individually

Slide from Amanda's Talk in TIC

Next Steps

- Energy calibration of AstroPix v3
- Optimize configuration settings
- Depletion depth measurements are ongoing
 - TCT data collected by Amanda with the help of UCSC colleagues
- Irradiated AstroPix v3 with different 400 MeV Proton dose
 - Data analysis and sensor characterization of irradiated samples
- AstroPix v3 quad-chip development
 - Carrier board if designed by Taylor (check his talk this afternoon)
 - We have assembled the first few boards
 - They are under testing
- Module-like board design with 8 single chips is undergoing

AstroPix v3 quad-chip carrier board

- Demonstrate required services
- Daisy chaining

Thank you

AstroPix

HV-CMOS Monolithic Active Pixel Sensor (MAPS):

- Combination of silicon pixel and front-end ASIC
- On-pixel charge amplification and digitization
- The technology uses more typical CMOS wafer processing for cost-effective mass production
- Fabrication on a single wafer enables a shorter design cycle
- No need to bump-bond to each pixel improves yield

AstroPix (based on ATLASPix3 arXiv:2109.13409)

- 180 nm HV-CMOS MAPS sensor designed at KIT (also designed ATLASPix, MuPix, etc.)
- Developed for AMEGO-X GSFC/NASA mission (Upgrade to the Fermi's LAT)

AstroPix

AstroPix v3 Iradiation

- IV and CV measurements performed for the v2/v3 chips before irradiations
 - Same measurements will be repeated post irradiation
- 9 v2 & 6 v3 chips irradiated for Passive Irradiation (Al-foil dosimetry)
- Active Irradiation for Latch-up (and SEE) is planned week of 26th May

V2 Irradiation

Nb of samples	Doses (400 MeV protons)
3	4.50E+13
3	1.08E+15
2	1.01E+16
1	5.02E+16

V3 Irradiation (low and high ResChips)

(i i i i i i i i i i i i i i i i i i i								
Nb of samples	Doses (400 MeV protons)							
2	4.50E+13							
1	5.04E+15							

AstroPix

AstroPix Readout

- 10 bytes of data per hit header (chipID, payload), row/column, timestamp, ToT
- SPI I/O daisy chained chip-to-chip signal transfer
 - signals are digitized and routed out to the neighboring lex bus tape chip using 5 SPI lines via wire bond **Digital periphery**
- Power/Logic I/O distribution on the module (through a bus tape)
 - 4 power lines (LV, HV), ~20 Logic I/O (SPI, clk, timestamp, interrupt, digital Injection, etc.)
 - HV, VDDA/VDDD(1.8V), VSSA(1.2V), Vminuspix(0.7V) §
 - power distribution can be controlled using voltage regulators
 - mostly part of the end of the stave services
- Data will be received by FPGA at the end of the stave
 - FPGA aggregates data before sending off-detector
- Low heat load at chip, only cooling of end of the stave card
- The operational temperature for AstroPix is at room temperature and considered to be operated at 22 °C AstroPix

AstroPix Assembly

AstroPix v5 (Production version)

- Full size chip 2×2 cm², pixel pitch 500 μ m,
- 35×35 pixel matrix $\rightarrow 1225$ hit buffers
- Fix any bug from v4

*The designs presented on these slides are not final but for illustration only

Module Strategy

- QC testing with wafer probing + Module and stave level QC testing and tuning
- "Baseline" model of Modules on Stave
 - Module 8 single chips
 - Stave 13 Modules 104 chips
 - 12 or 14 Staves per AstroPix layer per Calorimeter Sector
 - Total 249600 chips
- All staves are identical and get combined in a separate production step
- Data is transmitted to the end of the Stave card using flex base tape
- Institutions ANL, GSFC/NASA, KIT, UCSC, Korea, Oklahoma State

AstroPix Timeline and Production

v3 full size chip (ongoing testing)

- Test bench characterization (ongoing)
- Testbeam performance studies
- Active and passive irradiation ~10¹⁵ n_{equivalent}/cm²
- Quad-chip readout (ready to test) for NASA's hosted payload mission (A-Step) - January 2025
- Integration with Pb/SciFi FY2024 (Henry's talk)

v4 new features for better performance (MWP)

- **Final design version**, smaller chip (1cm × 1cm)
- Fabricated wafers delivered last week
- Chip carrier board design for bench test is ready for the PCB fabrication

v5 full size final chip

- Fix any bugs from v4
- v5 chips available November 2024

	_		_	_		_	_		_	_				_		_	_			_		_	_	_	í.
	FY24																FY25							Í	
Tasks	0	Ν	D	J	F	М	A	М	J	J	Α	s	0	Ν	D	J	F	М	Α	М	J	J	A	s	
Full ComPair Instrument								С	DF	R														P	l
AstroPix Tracker													Tł	r-ا	PIF	२									
AstroPix v3 Quad Chip Testing																									I
v3 Depletion Test																									
v3 multi-layer testing (A-STEP)																									
Integrate v3 w/ proto Segment																									
AstroPix v4 MPW design + fab																									ĺ
AstroPix v4 carrier board																									
AstroPix v4 testing																									
v4 Depletion Test																									
Standard test procedure dev.																									ĺ
AstroPix v5 testing carrier board																									
AstroPix v5 design + fab																									
AstroPix v5 testing																		De	liv	er	to	A٨	1L		

GSFC/NASA ComPair-2 AstroPix timeline

BIC@ePIC Timeline

- Prototype R&D (v3) Ongoing till Nov 24
- Pre-Production (v5) chips starts Nov 2024 (More info in Maria's talk)

Production

• Fabrication by TSI - with a large production order, AMS is a backup