

AstroPix v4 Design and first tests

Nicolas Striebig*, Richard Leys, Ivan Peric *striebig@kit.edu

ePIC Workshop, Jan 10, 2024

Karlsruhe Institute of Technology

Content

- AstroPix4 design
- First functionality tests
- Summary and Outlook

Specifications for TSI May 2023 run

- Size: 1 cm x 1 cm
- Matrix: 16 x 13 pixels
- Pixel size: 300 um x 300 um
- Pixel pitch: 500 um
- Interfaces: QSPI Daisychain, SR
- Integrated voltage DACs
- Integrated injection switch
- Integrated temperature sensors

Improvements over v3:

- TuneDACs
- Hitbuffers + FlashTDC measurement
- Reduced pixel capacitance 274 fF vs 391 fF @100um depletion

AstroPix4 I/O

- Clocks: 2.5 MHz timestamp clock (used as refclk for PLL)
- Digital Interfaces:
 - QSPI max. 5 MB/s: Configuration, Readout
 - Shiftregister Interface: Configuration fallback
- Interrupt, Hold
- Analog output: monitor amplifier output in Row0
- Hitbus: monitor comparator outputs
- Cal: Injection pulse
- Power:
 - Analog 1.8 V + 1.2V
 - Digital 1.8 V
 - Vminuspix 0 0.9 V
 - HV

Karlsruhe Institute of Technology

TuneDACs

- 3 SRAM cells per pixel to control current DAC
- Number of bits can be increased if needed
- Placed in periphery
 - would add capacitance if placed in pixel
- Used to tune comparator branch currents to compensate threshold dispersion

(b) The threshold dispersion before (red) and after (blue) tuning for the full MuPix10 matrix with an equivalent signal of $3000 e^{-1}$.

Source: https://arxiv.org/pdf/2012.05868.pdf

Astropix v1 - v3: Or'd Rows and Columns

Or'd Rows and Columns

Advantages:

- Low number of channels
- Disadvantages:
 - Identification problems with multiple hits in Row/Col
 - High bus capacitance → limits time resolution

Astropix v4: Individual Hitbuffers

- Hits from every pixel are saved individually
- 16 x 13 pixel matrix -> 208 hitbuffers
- Similar to ATLASpix design
- Advantages:
 - No identification problems with multiple hits in Row/Col
 - Lower occupancy
- Disadvantages:
 - Occupies larger chip area

AstroPix Hitbuffer

- Coarse 20 MHz timestamp saved on leading and trailing edge of a hit
- 20 MHz clock generated by internal PLL
- Each Hitbuffer contains priority logic, DRAM and TDC
- Global DLL stabilized Flash TDC measures time from hit edge to next rising clock edge
- Resolution ~3ns
- No static power, will idle most of the time average power dominated by leakage <100 nW

Karlsruhe Institute of Technology

AstroPix Hitbuffer TDC

- TDC delay elements are stabilized by global DLL (1 per chip)
- Without calibration:
 - Mismatch: +/- 0.5 LSB
 - Temperature variation (10 to 50 °C): < 0.17 LSB</p>
- Could be improved with automatic calibration
 - After each measurement, automatic measurement of a fixed time period, i.e. 1 clock cycle

First Functional tests

- Analog
 - Signal shape looks good
 - Less baseline noise
 - Hitbus works
- Breakdown (Okmetic 370 Ohm-cm)
 - -380V
- Digital with internal PLL
 - Injection 4 pixels enabled
 - Hits can be properly decoded
 - TS1 and TS2 timestamps (20 MHz rising/falling edge) look good
 - TDC currently not working
- Digital Power
 - 4x decrease to ~3mW
 - 0.65 mW leakage
 - 0.38 mW LVDS receiver
 - ~2 mW digital logic

	id	payload	row	col	ts1	tsfine1	ts2	tsfine2	tsneg1	tsneg2	tstdc1	tstdc2	ts_dec1	ts_dec2
0	0	7	3	6	14538	5	14445	5	0	0	0	0	97177	97718
1	0	7	0	0	14539	4	14395	2	1	1	0	0	97175	97939
2	0	7	11	6	14539	4	14398	1	1	1	0	0	97175	97953
3	0	7	0	6	14539	4	14399	4	1	1	0	0	97175	97960

 $P_{VDD} = 1.8 \text{ V} \cdot 1.65 \text{ mA} = 2.97 \text{ mW} \text{ (V3: 12 mW)}$

DLL and TDC

DLL

- DLL seems to work
 - Sometimes gets stuck after configuration -> 4mA current draw on VDD
 - This is expected, after reseting locks again
- Not a DLL problem -> Timing problem in TDC control
- TDC control logic restarts to early
 - Basically resets at the same time as bits are read out
- TDC bits therefore always 0
- Will be fixed in V5

AstroPix QSPI

AstroPix2 digital: 2x5 Byte

Each per Col/Row

- 8b Header
- 8b col/row
- 8b TS
- 16b ToT
- AstroPix4: 1x8 Bytes
 - 8b Header (5 bit ChipID, 3 bit Payload)
 - 6b Row
 - 6b Col
 - 2x 18b TS
 - 2x 4b TDC

Commands

BIT	RELD	DESCRIPTION
[4:0]	Address	Requires 20 single addresses - 0x00 - 0x14 : Single addresses - 0x15 - 0x1F : Reserved - 0x1D: Invalid - 0x1E: Broadcast
[7:5]	Command	8 Commands: - 0x01 - NOCMD / IDLE - 0x02 - Routing: dispatch addresses - 0x03 - Shift Register Config

Readout

- Wait for interrupt signal low
- Toggle SPI clk to read out

Karlsruhe Institute of Technology

AstroPix4 Summary

- AstroPix4 received in September 2023, first test in Nov 2023
- Reduced digital power
- Per pixel readout works
- TDC problem identified and understood
- Breakdown voltage promising
- Outlook on further measurements
 - Breakdown voltage measurements with HiRes wafers
 - Time resolution measurements
 - TuneDAC characterization

Backup

Introduction – HV-CMOS

- Charged particles or photons generate electron-hole pairs in depletion region of the sensing diode formed by deep n-well and p-substrate
- Separated by strong electric field
- Electrons drift to charge-collecting deep n-well
- Deep n-well contains shallow wells for electronics
- High-Voltage CMOS Active Pixel Sensor (HVMAPS)

Working principle:

- 1. Charge collected by pixel n-well
- 2. Converted to voltage signal by Charge Sensitive Amplifier
- 3. Analog voltage _ pulse shaped and converted to digital signal by comparator
- **4.** Hit information stored in hit buffer

Working principle:

- 1. Charge collected by pixel n-well
- Converted to voltage signal by Charge Sensitive Amplifier
- 3. Analog voltage _____ pulse shaped and converted to digital signal by comparator
- **4.** Hit information stored in hit buffer

Working principle:

- 1. Charge collected by pixel n-well
- Converted to voltage signal by Charge Sensitive Amplifier
- Analog voltage _ pulse shaped and converted to digital signal by comparator
- 4. Hit information stored

in hit buffer

Working principle:

- 1. Charge collected by pixel n-well
- Converted to voltage signal by Charge Sensitive Amplifier
- Analog voltage _ pulse shaped and converted to digital signal by comparator
- 4. Hit information stored in hit buffer

Readout logic

- Controlled by state-machine (FSM)
- Working principle:
 - Priority Logic: Data from highest active Hitbuffers in every column are loaded into EoCs
 - FSM goes trough all loaded columns and writes the data into async FIFO
 - If FIFO is not empty, interrupt goes low
 - DAQ toggles the SPI clock, which initiates FIFO readout via QSPI Interface
 - From the outside perspective i.e. the DAQ, no difference to older AstroPix version, same protocol just different payload size

