

SCINTILLATING FIBER CHOICE INTRO

MARIA ŻUREK

ZISIS PAPANDREOU

HENRY KLEST

CONSIDERATIONS

- How many photons do we see at the SiPM?
 - Raw yield of photons / MeV
 - Attenuation length
 - Cladding for better light trapping
 - Wavelength of photons emitted at the end of the fiber
- Scintillation process timing characteristics
- Cost, schedule, delivery method
 - Delivered in canes or spools?
 - 4500 km of fibers, non-trivial logistics
- Options on the table are Kuraray single- and double-clad, as well as Luxium single-clad (double-clad??)

FIBER SPECS

- All three fiber options have similar scintillation yields of ~8000 photons/MeV
 - Emission spectra well matched to SiPM PDE curve
- Differences in trapping efficiency, attenuation, cost

Attenuation

- Fairly vague information given on attenuation by manufacturers
- Measurements performed by Regina & Korea
- Simulation studies by Maria

Single cladding fiber is standard type of cladding.

Multi-cladding

l uxium

Multi-cladding fiber(M) has higher light yield than single cladding fiber because of large trapping efficiency. Clear-PS fiber of this cladding has extremely higher NA than conventional PMMA or PS fiber, and very useful as light guide fiber. Multi-cladding fiber has long attenuation length equal to single cladding fiber.

SciFi studies - Input

Measured attenuation dependencies for different naked fibers measured

From measurements at Uni Regina

$$I(\Delta) = I_0(\alpha e^{\Delta/\lambda_1} + (1 - \alpha)e^{\Delta/\lambda_2})$$

	I ₀	α	$λ_1$ [cm]	λ ₂ [cm]
Kuraray Single Clad	9.29E+01	4.16E-01	7.47E+01	7.52E+02
Kuraray Double Clad (New)	1.35E+02	3.06E-01	5.82E+01	7.23E+02
Luxium Single Clad	7.43E+01	4.23E-01	3.92E+01	4.91E+02
GlueX Kuraray Double Clad	1.37E+02	1.81E-01	6.09E+01	4.18E+02

SciFi studies - Input

N of phe/GeV for different fiber types

- Nb of photelectrons/GeV corrected for attenuation from Baby BCal Hall D measurement [phe/GeV]: 1100
 - Improvement factor from new family SiPMs from improvement in PDE: 1.5
 - Improvement factor from optical connection: 1.16
- Attenuation dependence from Old
 Kuraray Fiber (GlueX Double Clad)
 anchored to 1914 phe/GeV at d = 0 cm

SciFi studies - 2-side readout

Use attenuation dependencies (nphe/GeV) to calculate energy and nphe per side of SciFi/Pb Calo

- From the simulation: energy per calorimeter cell: E^{cell}, and z position of the shower (that gives us *dist1* and *dist2*)
- E^{cell} is translated to *nphe* per end of the calorimeter (at *dist1*, and *dist2*) using attenuation dependencies
- *nphe* at each end of the calorimeter **rounded** to integer, and **smeared with Poissonian distribution**
- After smearing, *nphe* are translated to energy at each calo end, and energy threshold cut (5 MeV or nb of phe, i.e., 5 phe) is applied
- Energies of the cells that survived the cut are then **corrected back for attenuation and summed** → this gives us "calibrated for attenuation" energy per side of the calorimeter
 - Final absolute calibration requires adjustment of the sampling fraction/calibration constant to match the true particle energy

Low Energy Gammas - Energy Resolution

Low energy points with minimum energy cuts (5 MeV corrected for sampling fraction, ~0.5 MeV for non-corrected energy)

	e-going			
	а	b		
Old GX	0.059(0.0045)	7.5e-09(3.9e+04)		
NKD	0.06(0.0044)	8.6e-09(3.5e+04)		
NKS	0.066(0.0054)	4.2e-09(6.5e+04)		
L	0.078(0.0089)	6.2e-10(1.9e+05)		
	p-going			
	а	b		
Old GX	0.069(0.0076)	1e-09(1.3e+05)		
NKD	0.066(0.0064)	2e-09(9.6e+04)		
NKD NKS	0.066(0.0064) 0.075(0.0077)	2e-09(9.6e+04) 1e-09(1.5e+05)		

Low Energy Gamma - Efficiency

8

Low Energy Gamma - Efficiency

MIPs at η = 0, number of cells fired, true energy Muons at 5 GeV

MIPs at η = 0, number of cells fired, attenuated energy

Muons at 5 GeV, 0.5 MeV threshold cut

Energy deposit from muons

MIPs at $\eta = +1$ detection efficiency

GX e cut: 0.005 GeV = nphe cut: 9.5 NKD e cut: 0.005 GeV = nphe cut: 9.4 NKS e cut: 0.005 GeV = nphe cut: 6.4 L e cut: 0.005 GeV = nphe cut: 5.1

GX nphe cut: 5 = e cut: 0.0026 GeV NKD nphe cut: 5 = e cut: 0.0026 GeV NKS nphe cut: 5 = e cut: 0.0038 GeV L nphe cut: 5 = e cut: 0.0048 GeV

MIPs at $\eta = -1$ detection efficiency

GX e cut: 0.005 GeV = nphe cut: 9.5 NKD e cut: 0.005 GeV = nphe cut: 9.4 NKS e cut: 0.005 GeV = nphe cut: 6.4 L e cut: 0.005 GeV = nphe cut: 5.1

GX nphe cut: 5 = e cut: 0.0026 GeV NKD nphe cut: 5 = e cut: 0.0026 GeV NKS nphe cut: 5 = e cut: 0.0038 GeV L nphe cut: 5 = e cut: 0.0048 GeV

MIPs at η = 0 detection efficiency

GX e cut: 0.005 GeV = nphe cut: 9.5 NKD e cut: 0.005 GeV = nphe cut: 9.4 NKS e cut: 0.005 GeV = nphe cut: 6.4 L e cut: 0.005 GeV = nphe cut: 5.1

GX nphe cut: 5 = e cut: 0.0026 GeV NKD nphe cut: 5 = e cut: 0.0026 GeV NKS nphe cut: 5 = e cut: 0.0038 GeV L nphe cut: 5 = e cut: 0.0048 GeV

OPEN/DISCUSSION QUESTIONS

- What light yield is necessary to see the MIP?
- Can we use spools, or do we need canes?

BACKUP

Kuraray Old Double Clad (GlueX) fiber

Action 2000

 ò

500 MeV electrons - energy resolution

Low Energy Gammas - Energy Resolution

Fitted parameters for GX - e-going: a = 0.044, b = 0.012Fitted parameters for GX - p-going: a = 0.042, b = 0.012

Fitted parameters for NKD - e-going: a = 0.043, b = 0.01Fitted parameters for NKD - p-going: a = 0.042, b = 0.011

Fitted parameters for NKS - e-going: a = 0.049, b = 0.0095Fitted parameters for NKS - p-going: a = 0.047, b = 0.011

Fitted parameters for L - e-going: a = 0.056, b = 0.0067Fitted parameters for L - p-going: a = 0.053, b = 1.4e-08

Low Energy Gammas - 100 MeV and 200 MeV

24

Low Energy Gammas - 100 MeV and 200 MeV

