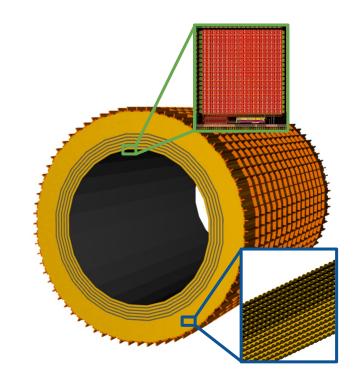
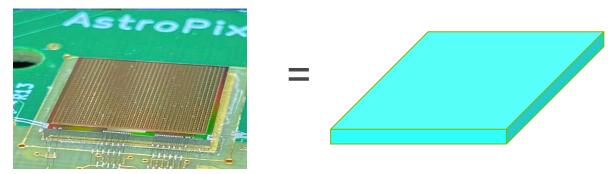


ASTROPIX TRACKER PRODUCTION MODEL

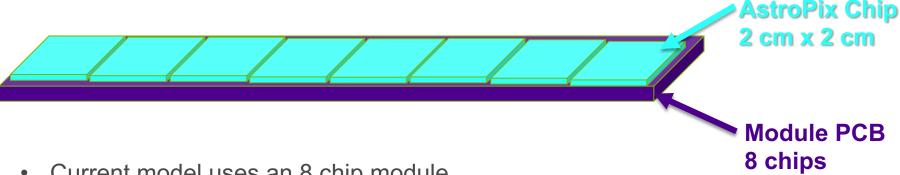

JESSICA METCALFE

ASTROPIX TRACKER PRODUCTION


BIC Tracker

- ~100 m² of silicon
- ~5,000 wafers
- ~250,000 chips
- Optimize the design & building procedures for industrial scale production
 - 1 module flavor x31,200
 - 1 stave flavor x2,400

ASTROPIX CHIPS

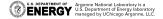

- ~5,000 wafers
- ~250,000 chips

- Probe wafers using a fully automated machine
 - Load a cartridge of 10 wafers, let the machine do the work
 - Identify failing chips (digital/analog) and failing bumps
- Wafers are diced

ASTROPIX MODULE

Build ~31,200

- Current model uses an 8 chip module
- Mounted on a rigid pcb for easy handling
 - For space and cooling reasons, the pcb may need to go on top of the chips...
- Chips are mounted using an automatic pick-and-place machine
- Chips are wire bonded to the pcb
- Chips undergo mechanical and electrical QC to verify they work

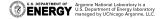

ASTROPIX STAVE(STEP 1)

Build ~2,400

~208 cm \rightarrow 2 meters!

Stave 13 modules

- Current model has 13 modules on a stave
 - This will be frozen ASAP
- Plan to use Aluminum staves
- Nice to have some easy screw mounting to the staves
 - Or could use tooling similar to SLAC for ATLAS Pixels
 - Or could be automated with pick-and-place machine
- Metrology QC is done at this stage


ASTROPIX STAVE+BUS TAPE (STEP 2)

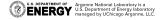
Build ~2,400

Bus Tape
Power/data lines to each module

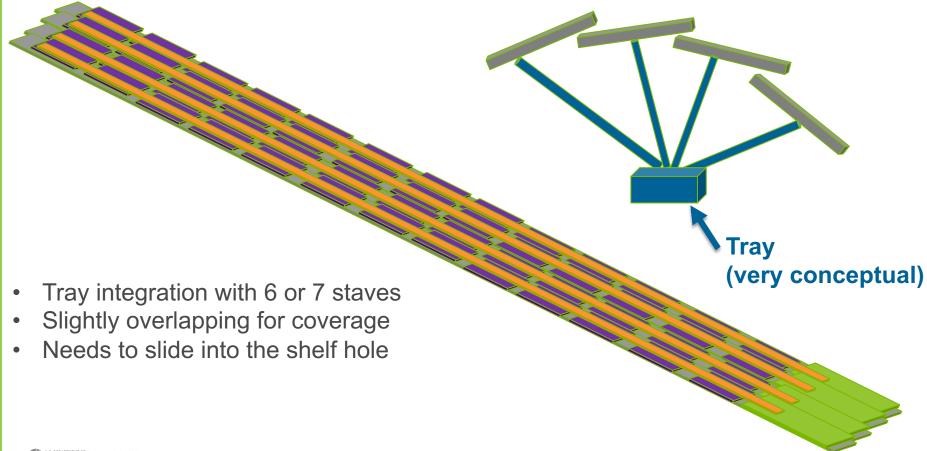
~208 cm \rightarrow 2 meters!

- Connect the modules to the bust tape
- Bus tape will provide power, command, data, and any types of monitoring lines
- Easiest to have a connector(s) on each module that connects to the bus tape
 - Also used for module testing

ASTROPIX STAVE+BUS TAPE+EOS (STEP 3)

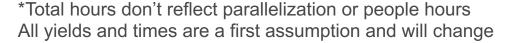

Build ~2,400

Bus Tape
Power/data lines to each module


End of Stave Card

~208 cm \rightarrow 2 meters!

- Stave will be connected to the end-of-stave card via the bus tape
- End-of-stave card will interface to the ePIC DAQ
- This end-of-stave card is used for QC testing the stave
 - It could be the final EOS or one associated with a test stand
- Assume that the modules are relatively easy to rework on a stave, then the majority of detailed electrical tests will happen at this stage



ASTROPIX TRAYS

ASTROPIX TRACKER PRODUCTION

	# On- Detector	Yield	Total to Build	Total Good After Yield	Hours/ piece	Total Hours*
wafers			4838			
chips	249,600	89%	290,304	261,274	0.05	14,515
modules	31,200	98%	32,659	32,006	0.21	6,858
staves	2,400	99%	2,462	2,437	0.63	1551
trays	384	99%	390	386	2.5	975
Module PCB	31,200	95%	34,378	32,659	0.025	860
Bus tape	2,400	90%	2,736	2,462	0.025	68
EOS cards	2,400?	90%	433	390		

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BACKUP

Argonne National Laboratory

NASA Goddard Space Flight Center

Oklahome State University

University of Connecticut

University of California Santa Cruz

University of Manitoba University of Regina

Mount Allison University

Canada Fund for Innovation

da Foundation Fondation canadienne pour l'innovation

Kyungpook National University

Yonsei

University of Seoul

Pusan National University

Korea

University

Sungkyunkwan

University

Hanyang

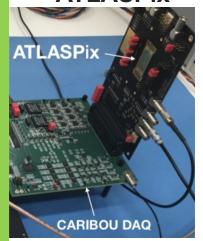
University

Gangneung-Wonju National University

Karlsruhe Institute of Technology

University of Giessen

ePIC BIC
Detector
Subsystem
Collaboration


AstroPix Collaboration:

Nagoya University

ASTROPIX DEVELOPMENT

ATLASPix

AstroPix_v1

AstroPix_v2

AstroPix v3

100 µm thick wafer

40 x 130 µm² pitch

0.3 x 1.6 cm² chip

150 mW/cm²

175 x 175 μm² pitch

0.5 x 0.5 cm² chip

14.7 mW/cm²

250 x 250 µm² pitch

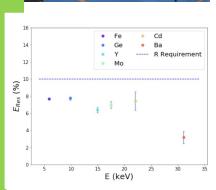
---------------------------------720 μm thick wafer ----------------------------

1 x 1 cm² chip

3.4 mW/cm²

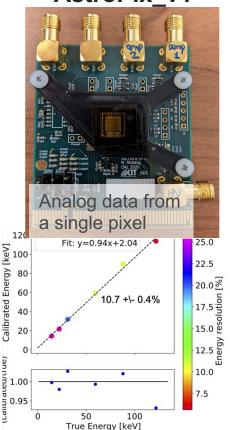
500 x 500 µm² pitch

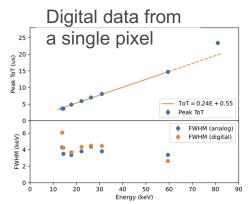
2 x 2 cm² chip


1.06 mW/cm²

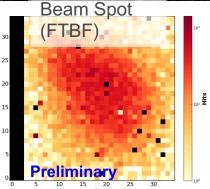
(Power numbers represent amplifier+comparator only, not full digital power. Full v3 power draw = 4.12 mW/cm²)

ASTROPIX DEVELOPMENT


ATLASPix


I. Brewer et al, 2021 A. Steinhebel et al, 2022

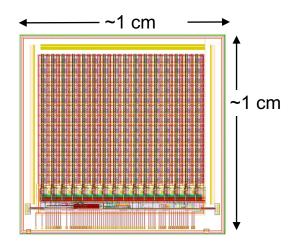
AstroPix_v1


AstroPix_v2

AstroPix v3

Y. Suda et al, 2023

Argonne 📤


ASTROPIX: V4

AstroPix Features (v4):

- Potentially the final design in small size 1 cm x 1 cm
- 500 um pixel pitch
- Wafers recently delivered by foundry
- Previous versions needed to meet certain 'flyable' specifications like low power
- Implement more features for better performance

Features:

- Time stamp w/ 3.125 ns time resolution
- Row & Column from individual pixel hitbuffer
- Increase Time-Over-Threshold (ToT) bits
- Improve Threshold tuning (5-bit)
- Mask noisy pixels
- Pass hits to next chip (daisy chain)
- Self-triggered (only read out active hits)

ASTROPIX: NEXT STEPS

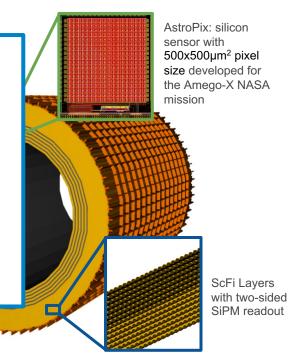
Several Features to Validate Performance:

- Daisy chain readout
 - Multi-chip module read-out board
 - Check for data loss/max occupancy
- Sensor efficiency between pixels, depth
 - Preparing for edge-TCT measurements
 - Charge collection efficiency
- Flex bus tape design
- DAQ development
- Update previous results with v4
 - Test Beam
 - Irradiation: SEU, LET, Total Dose

- Command/Power is distributed through a bus tape
- Wire bonded from bust tape
- Signals are digitized and routed out to the neighbor chip via wire bonds

BIC

Addressing the unique challenges for the barrel region in ePIC


Hybrid concept: 6(4 now) layers of Astropix interleaved with the first 5 Pb/ScFi layers,

followed by a large Pb/ScFi layers

- √ Deep calorimeter (21)
- √ Excellent energy resc
- Unrivaled low-energy the energy measurer
- √ Unrivaled position res
- √ Deep enough to serv
- √ Very good low-energy
- √ Wealth of information suited for particle-flow

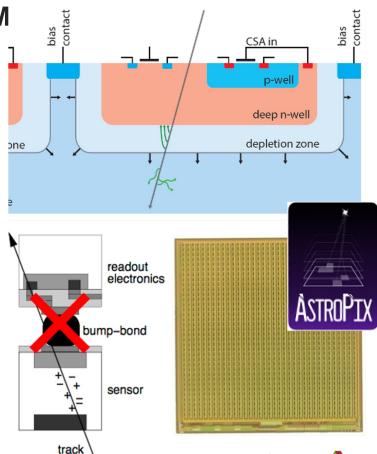
BIC Tracker

- ~100 m² of silicon
- ~5,000 wafers
- ~250,000 chips
- Optimize the design & building procedures for industrial scale production
 - 1 module flavor x31,200
 - 1 stave flavor x2,400

Makes the tracking MPGD layer behind the DIRC unnecessary

SENSORS: MONOLITHIC HVCMOS

(MONOLITHICS ACTIVE PIXEL SENSOR (M


Monolithic: combines a traditional silicon pixel sensor wafer and the Front-End ASIC in a single wafer

- Each pixel has it's own amplifier in a deep n-well
- High-resistivity substrates enable sensor depletion for collection via drift rather than diffusion
- Technology uses more typical CMOS wafer processing for cost effective production
- Single wafer enables shorter design cycle

History: <u>HVCMOS</u> developed by Ivan Peric at Karlsruhe Institute of Technology (KIT). He has designed MuPix, ATLASPix, AstroPix, etc.

AstroPix: initially for space-based applications

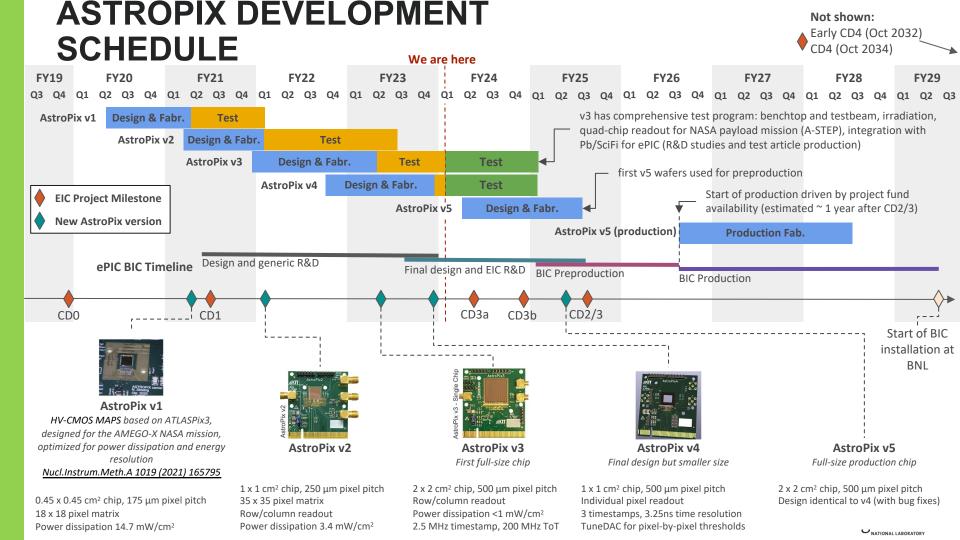
 Upgrade to the next generation Fermi Telescope— AMEGO-X

ASTROPIX TIMELINE & PRODUCTION

AstroPix versions

- v1 early prototype
- v2 current test bench & test beam studies
 - extensive test bench characterization
 - higher noise due to larger pixel size
 - LET radiation testing
 - first test beam run a few weeks ago
- v3 full size chip
 - minor fixes from v2
 - OR'd rows & columns
 - just received
- v4 new features for better performance (MPW)
 - 'final version', but smaller chip (1 cm x 1 cm)
 - plan to submit in May 2023
 - better noise/threshold performance
 - o per pixel hitbuffer
- v5 full size chip
 - fix any bugs from v4
 - Final production version
 - chips available November 2024

Design Validation

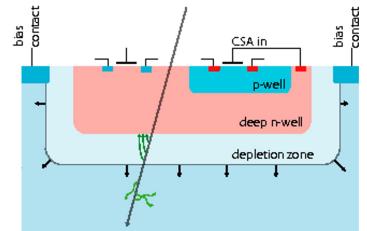

- test bench characterization complete
- LET irradiations done
- test beam measurements on-going
- multi-chip DAQ development
- daisy chain readout validation
- compare-1 NASA balloon test Fall 2023
 - DSSD's
- A-STEP sounding rocket January 2025
- ComPair-2 balloon launch 2026

Multi-layer calorimeter prototype (ANL)

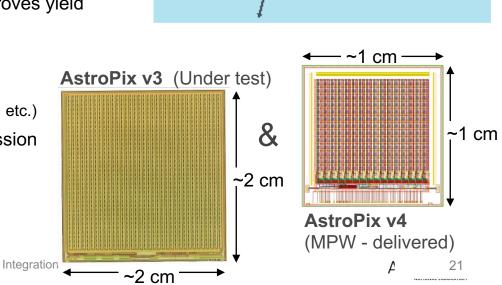

- full scale prototype to be built and tested w/ v3
- DAQ development joint with NASA

Production

- fabrication by TSI
 - AMS is a backup, but need a large order


BIC HIGH-LEVEL SCHEDULE

AstroPix


HV-CMOS Monolithic Active Pixel Sensor (MAPS):

- Combination of silicon pixel & Front-End ASIC
- On-pixel charge amplification and digitization
- Technology uses more typical CMOS wafer processing for cost effective mass production
- Fabrication on single wafer enables shorter design cycle
- No need to bump-bond to each pixel improves yield

AstroPix (based on ATLASPix3 arXiv:2109.13409)

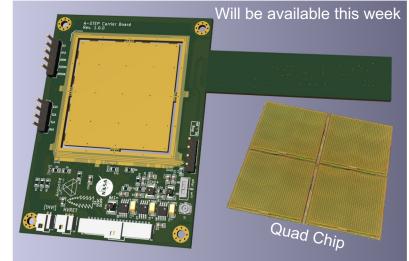
- 180nm HV-CMOS MAPS sensor designed at KIT (also designed ATLASPix, MuPix, etc.)
- Developed for AMEGO-X GSFC/NASA mission (Upgrade to the Fermi's LAT)
- Power consumption <1.5 mW/cm²
- Energy resolution target of 2% @ 662keV

AstroPix Developments

AstroPix v1 - January 2021

- $0.45 \times 0.45 \text{ cm}^2 \text{ chip}$, 175 µm pixel pitch
- 18 × 18 pixel matrix
- Power dissipation ~14.7 mW/cm²

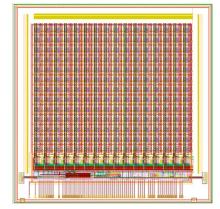
AstroPix v2 - December 2021


- 1 × 1 cm² chip with 250 μm pixel pitch
- 35 × 35 pixel matrix
- Hit identification with Row/Column readout
- Power dissipation ~3.4 mW/cm²

AstroPix v3 - February 2023

- 2×2 cm² chip with 500 µm pixel pitch
- Power dissipation <1 mW/cm² (targeted)
- Timestamp clock 2.5MHz, ToT 200 MHz
- 10 byte data frame per hit

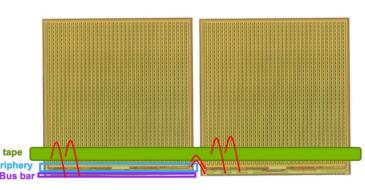
AstroPix v4/v5

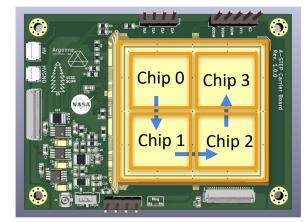

AstroPix v4 : Final design version will small size

- Chip size 1×1 cm²; Thickness 700 µm, $V_{BD} \sim 400V$
- Pixel pitch 500 μ m with pixel size 300 μ m, 16 \times 16 pixel matrix
- Individual pixel readout with individual hit buffer
 - No identification issue due to ghost hits
- 3 Timestamps 2.5MHz (TS), 20 MHz (Fine TS), and 16 bit Flash TDC
 - Fast ToT and Timestamp with 3.125 ns time resolution
- TuneDACs Pixel-by-pixel threshold tuning and pixel masking
- Daisy Chain readout pass hits to next chip through QSPI
- Self-triggered (reads out active hits)

AstroPix v5 : Full size final design

- No planned design changes
- Fix any bug from v4
- Full size chip 2×2 cm² pixel pitch 500 μ m,
- 35×35 pixel matrix \rightarrow 1225 hit buffers


AstroPix v4



AstroPix Readout

- 8 bytes data per hit header (chipID, payload), row/column, timestamp, ToT
- SPI I/O daisy chained chip-to-chip signal transfer
 - signals are digitized & routed out to the neighboring chip using 5 SPI lines via wire bond
- Power/Logic I/O distribution on the module (through a bus tape)
 - 4 power lines (LV, HV), ~20 Logic I/O (SPI, clk, timestamp, interrupt, digital Injection, etc.)
- HV, VDDA/VDDD(1.8V), VSSA(1.2V), Vminuspix(0.7V)
- power distribution can be controlled using voltage regulators
- mostly part of end of the stave services
- Data will be received by FPGA at the end of stave
 - FPGA aggregates data before sending off-detector
- Low heat load at chip, only cooling of end of the stave card
- Operational temperature for AstroPix is at room temperature Integration and considered to be operated at 22 °C

AstroPix v3 quad-chip carrier board

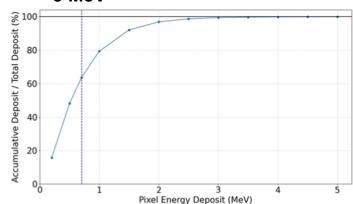
- Demonstrate required services
- Daisy chaining

AstroPix at ePIC

Low Rates

- The expected hit rate for all imaging layers together is well below < 3 × 10⁷ Hz
- This translates to a maximum hit rate per tracker stave (1 x 104 chips) < 36 kHz

Zero-suppression below threshold 20 keV ($4 \times$ noise floor) well suited for EIC electromagnetic showers


Timing requirement: 3.125 ns (v4/v5) - **driven by 10 ns bunch crossing**

Low Ionization radiation dose and neutron flux

- The maximum ionizing radiation dose < 1 kRad/year for the barrel region
- Max neutron flux order of 10⁹ n_{equivalent}/cm² per year

Dynamic range (see plot for 2 GeV e⁻)

Accumulative energy deposit to the total energy deposit for 2 GeV electrons.

- About 63% of the energy deposit was made through hits with deposit < 700 keV
- hits with deposit < 3 MeV contribute to 99% of the total energy deposit

Integration

AstroPix Assembly

Tray - a carbon fiber structure the staves will be mounted on. It will be slid into a shelf.

AstroPix Stave

Consists of 1 x 108 chips with the

AstroPix Module

Subset of chips

support structure, "turbofanned"

Shelf - a carbon fiber structure that is glued to the Pb/ScFi layers, that we will slide trays with AstroPix staves on.

Sector (48 total)

*The designs presented on these slides are not final but for illustration only

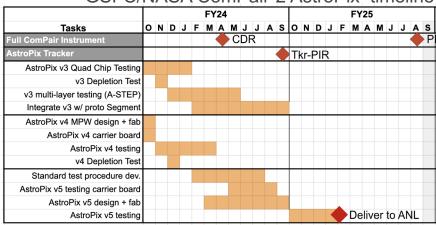
Module Strategy

- QC testing with wafer probing +
 Module and stave level QC testing and tuning
- "Baseline" model of Modules on Stave
 - Module 8 single chips
 - Stave 13 Modules 104 chips
 - 12 or 14 Staves per AstroPix layer per Calorimeter Sector
 - Total 249600 chips
- All staves are identical and gets combined in a separate production step
- Data transmitted to end of the Stave card using flex base tape
- Institutions ANL, GSFC/NASA, KIT
 .UCSC, Korea, Oklahoma Ståte_____2

AstroPix Timeline and Production

v3 full size chip (ongoing testing)

- Test bench characterization (ongoing)
- Testbeam performance studies
- Active and passive irradiation ~10¹⁵ n_{equivalent}/cm²
- Quad-chip readout (ready to test) for NASA's hosted payload mission (A-Step) - January 2025
- Integration with Pb/SciFi FY2024


v4 new features for better performance (MWP)

- Final design version, smaller chip (1cm × 1cm)
- Fabricated wafers delivered last week
- Chip carrier board design for bench test is ready for the PCB fabrication

v5 full size final chip

- Fix any bugs from v4
- v5 chips available November 2024

GSFC/NASA ComPair-2 AstroPix timeline

BIC@ePIC Timeline

- Prototype R&D (v3) Ongoing till Nov 24
- Pre-Production (v5) chips starts Nov 2024

Production

 Fabrication by TSI - with a large production order, AMS is a backup