

Silicon Vertex Tracker Geometry and Simulation

Shujie Li

Tracking Workfest Session ePIC January Collaboration Meeting @ ANL Jan 10, 2024

See <u>https://indico.bnl.gov/event/20126/</u> for craterlake tracking overview

ePIC-Craterlake Configuration

Silicon Vertex Tracker with large area MAPS sensor:

- High pattern recognition efficiency
- High spatial resolution
- Low material budget
- Good radiation hardness

SVT Tracker Geometry

SVT geometry on GitHub: gitub.com/eic/epic/compact/tracking/

ePIC geometry database

eic.jlab.org/Geometry/Detector/Detector-202310311 50001.html

- 3 inner vertex layers
 - ITS3
 - ~20x20um pixels
 - 0.05% X/X0
- 2 outer barrels
 - EIC-LAS staves
 - 0.55% X/X0

- 2x5 disks (forward/backward)
 - EIC-LAS
 - 0.24% X/X0
- Mechanical support structure and service cables

Epic-svt-l@lists.bnl.gov

Detailed view

Full screen

SVT Workfest / Work Package

All days

🖴 Print

Ongoing R&D:

- eRD104: readout and power
- eRD111: mechanical structure and cooling
- eRD113: sensor characterization

4

			00.00 00.00
	Radiation and rate environment		Laura Gonella 🖉
	A5000, APS Conference Center		08:05 - 08:25
	MOSAIX and EIC LAS (remote)	< Tue 09/	9/01 Wed 10/01 Thu 11/01 All days
	A5000, APS Conference Center		Print DDE Full screen Detailed view Filter
09:00	EIC-LAS ancillary / support IC	10:00	
	A5000, APS Conference Center		
	Discussion on sensor and IC		Characterization of the SVT sensors and anciliary IC
	A5000. APS Conference Center		R4100_APS Conference Center 10:15 - 10:45
See	e SVT workfest sessions on Τι	le/Wed	for details
¹⁰ ON	sensor, readout, power, coolin	g etc	B4100, APS Conference Center 10:45 - 11:05
	Readout of the ePIC SVT (remote)		Inventory of SVT power dissipation
			B4100, APS Conference Center 11:05 - 11:10
	A5000, APS Conference Center	12:00	Cooling of SVT layers and disks Nicole Apadula
11:00	Discussion on readout of the ePIC SVT		B4100, APS Conference Center 11:10 - 11:40
	A5000, APS Conference Center		Discussion on SVT cooling
	Basics of serial powering and S-LDO		B4100 APS Conference Center 11:40 - 12:00
	A5000, APS Conference Center		
	Serial powering for the ePIC SVT	12.00	
	A5000, APS Conference Center		11:25 - 11:45
	Discussion on serial powering for the ePIC SVT		
	A5000, APS Conference Center		11:45 - 12:00

Filter

08.00 - 08.05

Ernst Sichtermann et al

Tue 09/01

08:00

Wed 10/01 Thu 11/01

Welcome and introduction

A5000 APS Conference Center

epic/compact/tracking/vertex_barrel.xml

Current geometry in simulation:

3 ITS3 silicon layers (40um thick, r=3.6, 4.8, 12cm) approximated with 128 staves

Outer Barrels

ITS2 barrel stave:

ePIC simulation:

44 slightly tilt triangle staves (silicon + AI + carbon fiber plates)

Disks

In simulation: use larger centered hole to accommodate beampipe fan-out

Disks

Design: assemble disks with staves

Simulation: disks from 36 trapezoid slices.

High-priority task: implement off-centered hole and staves to reflect the true acceptance. See <u>https://github.com/eic/epic/issues/118</u>

Service cables and Supporting Structure

Planned cable routing

Courtesy of E. Sichtermann

Simulation: Cables guided out along the carbon supporting cone

Service cables and Supporting Structure

stave

ALICE ITS3 LOI

Simulation: Cables treated as uniform aluminum layers with effective thickness proportional to silicon area size.

	Stave X/X0	Stave transition (per 100 cm^2 of Si surface)*	Services (per 100 cm^2 of Si surface)*	Patch panel (per 100 cm ² of Si surface)*
ITS3 like vertexing	~0.1%	6.66 cm^3 of material with X/X0 of 0.0684 per traversed cm	2.96 cm^2 cross section with X/X0 of 0.022 per traversed cm	4.32 cm x 1cm x 1 cm with 0.102 X/X0 per traversed cm
ITS3 like barrel (up to 1.5m length)	0.55 %	4.286 cm^3 of material with X/X0 of 0.0684 per traversed cm	1.905 cm ² cross section with X/X0 of 0.022 per traversed cm	2.778cm x 1cm x 1 cm with 0.102 X/X0 per traversed cm
TS3 like disc (up to 60 cm liameter)	0.24%	6.66 cm^3 of material with X/X0 of 0.0684 per traversed cm	2.96 cm ² cross section with X/X0 of 0.022 per traversed cm	4.321 cm x 1cm x 1 cm with 0.102 X/X0 per traversed cm

Summary of ITS3 like Si tracking

DRAFT 2021_06_15_EIC_Si_material_projections LG

23

Sensor Unit

Current stave design Red = inactive areas see J. Glover's talk on Tuesday

In simulation:

ALL parts are implemented as solid surfaces with segmentation size of 20x20um. NO module, Periphery, or other mechanical details. NO inactive areas, noise, deficiency.

Digitization Scheme (ePIC digitization model)

1. Setup segmentation in geometry description file. Each SimHit has a cell ID on the detector surface

<readouts>

```
<readout name="SiBarrelHits">
```

```
<segmentation type="CartesianGridXY" grid_size_x="0.020*mm" grid_size_y="0.020*mm" />
<id>system:8,layer:4,module:12,sensor:2,x:32:-12,y:-20</id>
```

</readout>

</readouts>

- 2. Digitization in ElCrecon:
 - 1) read in SimHit (cell ID, edep, tim
 - 2) apply energy threshold (0.54 keV)
 - 3) put hit at the center of each cell, resolution = pixel size / sqrt(12)
 - 4) Digitized hit \rightarrow tracking measurement

To do: add clustering algorithm, noise, and use timing info

mailing list: eic-projdet-trk-recon-l@lists.bnl.gov

Track Reconstruction Study

- geometry optimization
- access more tracking hits and time info via other tracking detectors
- check tracking performance (theta, phi, dp/p, DCA resolution) against physics requirements *see background/tracking session on Thursday
- Algorithm development: seeding, vertexing, track projection etc.

Summary

- The ePIC SVT uses large area MAPS sensors with a combination of ITS2 and ITS3 technology, with several on-going eRD projects to decide detector specs.
- The current craterlake geometry is optimized to meet the physics requirements. It is implemented in DD4hep simulation with limited details. That serves the purpose of preliminary tracking study. Significant improvements will be needed for TDR.
- Digitization and reconstruction algorithm developments are on-going. Plenty of well-defined tasks are waiting for volunteers.

Thank you!

Backup

Disks

disk	Name in dd4hep	z pos (mm)	R_bpipe	x_offset	R_outer	R_inner_sym
5n	TrackerEndcapNDisk4	-1050	38.043	-3.310	430	46.3529
4n	TrackerEndcapNDisk3	-800	34.244	-0.817	430	40.0614
3n	TrackerEndcapNDisk2	-650	31.76	0	430	36.76
2n	TrackerEndcapNDisk1	-450	31.76	0	430	36.76
1n	InnerTrackerEndcapN	-250	31.76	0	230	36.76
1p	InnerTrackerEndcapP	250	31.76	0	230	36.76
2р	TrackerEndcapPDisk1	450	31.76	0	430	36.76
Зр	TrackerEndcapPDisk2	700	32.86	0.6	430	38.42
4р	TrackerEndcapPDisk3	1000	40.58	7.85	430	53.43
5p	TrackerEndcapPDisk4	1350	49.12	16.02	430	70.14

- X/X0=0.24%
- silicon + carbon fiber
 + aluminum plates
- 36 sections of

Service cables and Supporting Structure

Tracking Study with DIS Events

on-going:

- tracking performance study with background+DIS
- Dedicated study on number of hits and chi2

- use timing info for signal/background separation
- project trajectory to various detector surface/volumes