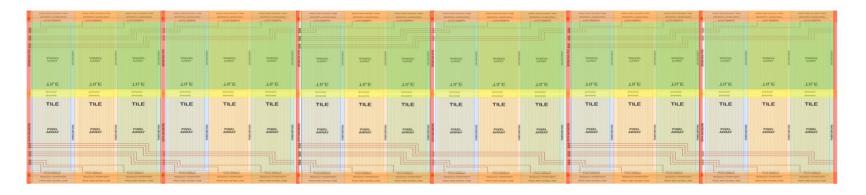

1

SVT Cooling

Nikki Apadula ePIC Collaboration Meeting


Jan 10, 2024

Power Density

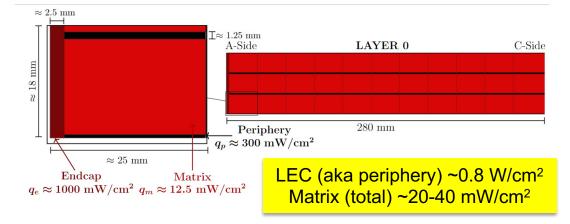
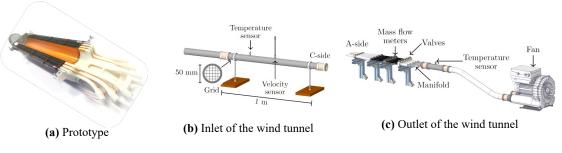

From EP R&D WP 1.2 General Reporting Meeting

Table 3.10: Estimates of average power dissipation per unit area over the main blocks composing the sensor.

CERN

Sensor heat sources

Sensor (ITS3 wafer-scale, EIC LAS)


- Matrix \rightarrow effective zone of particle detection \rightarrow Lowest heat dissipation
- Endcap \rightarrow control/configuration/signal/power \rightarrow Highest heat dissipation
- Peripheries \rightarrow Power transfer along stitching units \rightarrow Intermediate heat dissipation
 - **New information** \rightarrow still be worked into current/ongoing cooling tests

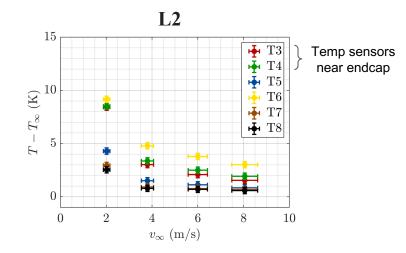
ePIC SVT DSC (*initial*) estimate: ~1 W per Endcap → ~1 W per Sensor

New estimate: Left endcap (1W) + matrix (6 RSU @ 25-40 mW/cm²) = 1.6 – 2 W per EIC LAS

Total sensor power dissipation estimate: 6.4 kW – 8 kW (up from 4 kW)

SVT IB air cooling

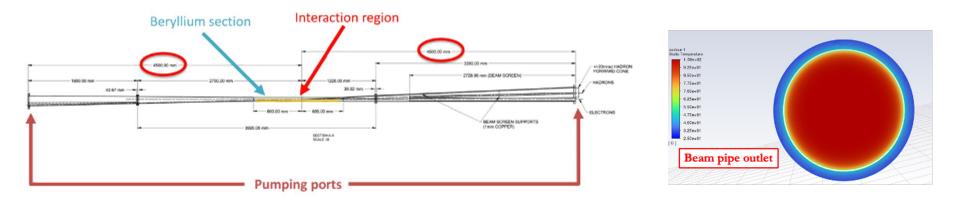
ALICE ITS3 cooling test setup


Starting point: Air cooling with carbon foam

Build off of work from ALICE ITS3

ALICE ITS3 has shown that air cooling is sufficient to keep $\Delta T < 10^{\circ}$ C

ePIC changes:


- Adapt to larger radii
- Adapt how air is routed in and out, i.e. suitable redesign of inlets and outlets.

Measurements: endcap = 1 W/cm², matrix = 50 mW/cm²

4

SVT IB air cooling: beam pipe bake-out

Previous ANSYS studies at JLab and LBNL: presentations on <u>6/6/22</u>, <u>2/28/23</u> Bench setup at JLab verifies results

Plan to pick this up again with a student @ LBNL this year

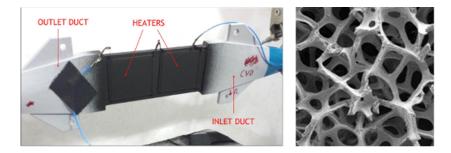
Cooling needs for bake-out?

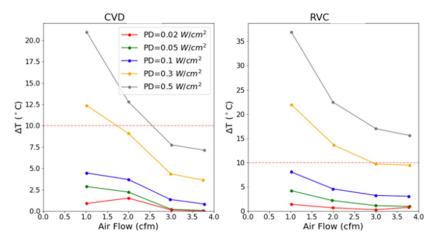
- Need to determine/refine temperature envelopes for materials
 - ALPIDE (ITS2) can **work reliably at 40 C** (did not study further)
 - Initial estimates from climate chamber studies up to 40 C at LBNL show the 65 nm DPTS performs reliably (work done by Barak Schmookler & Jonathan Witte)
- ITS3 has done an initial thermoelastic study
 - o 16 cycles between 10 48 C on ITS3 layer 2 (includes glue, carbon foam, silicon) → no failures
- Similar thermoelastic study will be performed for ePIC SVT IB
 - Larger radii \rightarrow more joints and failure points to consider
 - Need a cycle test, a longevity test, and a bake-it-til-you-break-it test

SVT presentations: <u>10/22/22</u>, <u>2/28/23</u> <u>eRD111</u>

SVT R&D: internal air cooling

We have investigated two foam types: Reticulated Vitreous Carbon (RVC) and Chemical Vapor Deposition (CVD)

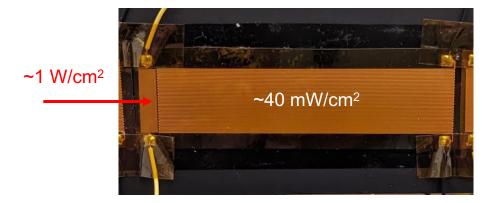

- RVC \rightarrow insulating, lower X/X₀
- CVD \rightarrow conducting, higher X/X₀


CVD maintains $\Delta T < 10^{\circ}$ C for all tested power densities.

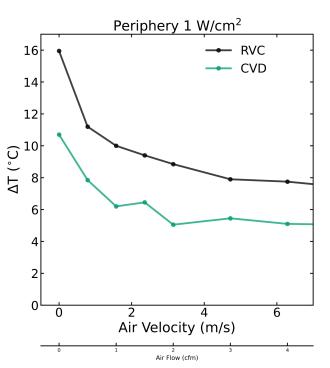
• RVC reasonable

Internal air cooling is viable

 Dependent on mechanical structure → needs further testing/modeling

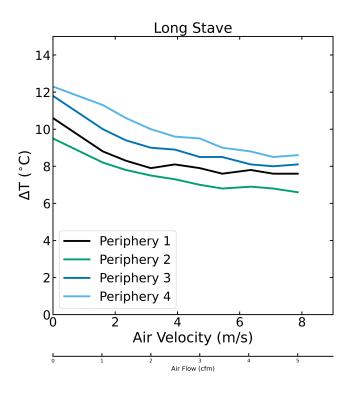

Aiming for $\Delta T < 10^{\circ} C$

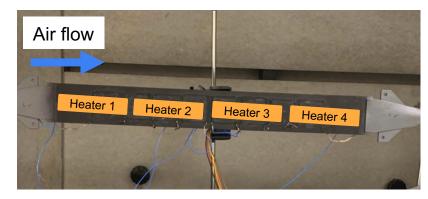
SVT specifics


SVT specific heater prototypes, two power zones

Tested just LEC (periphery) on both CVD & RVC

 ΔT reasonable even with NO air flow \rightarrow lots of foam surface area, using boron-nitride in glue for enhanced thermal conductivity


Thermal tests done by Tyler Hague & students

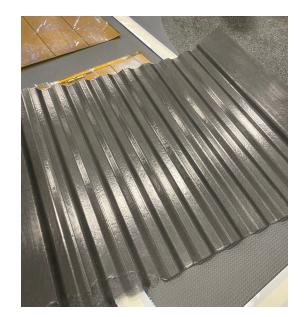

8

Carbon foam cooling over 0.5 m

*Air velocity calculated at duct

- CVD 6mm thickness
- Tested 4 LEC (periphery)
- Temperature increases farther away from air inlet
 - Caveat: powered in parallel and so could have slightly difference power densities
- ΔT still reasonable with NO air flow

Towards a corrugated test piece


Many iterations over the past few months

• 45 gsm uni-directional (-45, 0, 45) → twisted

- 34 gsm veil with varied resin layers
 - Opted for 2 layers of veil + 5 layers resin
- Ongoing: wet layup with epoxy resin

Corrugated prototype test pieces

Each piece \rightarrow 2 layers 34 gsm veil + 5 layers resin

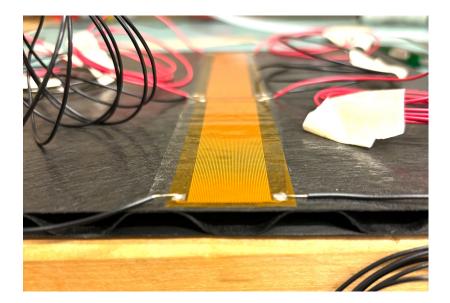
Face sheets glued with 9309 adhesive in 5 mm strips

Final size of prototype test piece = 22.4 cm x 20.2 cm

Final weight of prototype test piece = 22.5 g

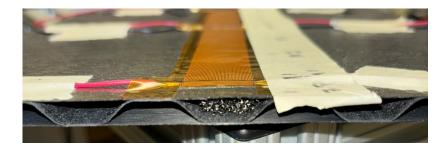
Density = 497 gsm $\rightarrow \sim 0.12\%$ X/X0

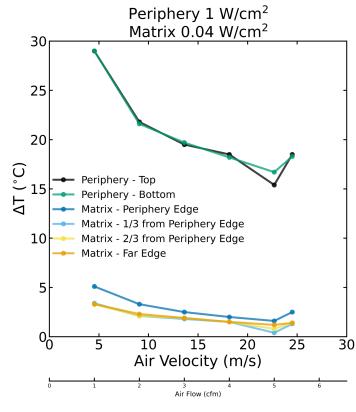
Silicon ~0.05% X/X0, adhesive 0.01-0.02% X/X0


First Prototype

Corrugated carbon fiber thermal tests

Two heaters with separate power zones for LEC (~1W/cm²) & matrix (~40 mW/cm²)

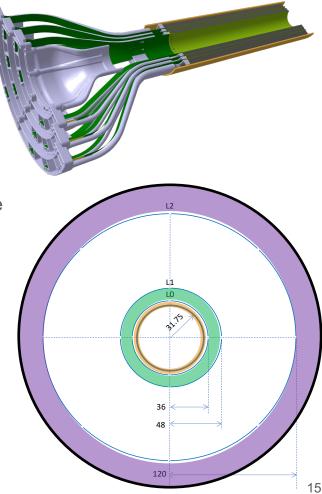

Using 3M 467MP double-sided tape, 60µm thick (used to glue silicon for STAR HFT PXL)


• First step: Put a tube in corrugated channel and blow air through

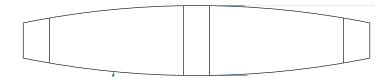
Results: air flow through corrugation

- No issues cooling the matrix
- LEC (Periphery) trending in the right direction
- Next steps:
 - Add foam under the LEC
 - Improve thermal conductivity
 - Better air control

Uptick at highest velocity possibly due to thermocouple breakage


Thoughts about air

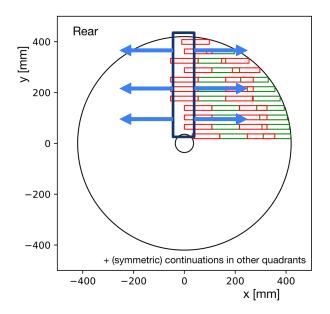
- Previous estimates: <u>Service estimates (work between SVT & project)</u>
 - 1 W per LEC \rightarrow 1 W per sensor: ~4 kW total, ~400 cfm air, ~12" duct
 - Duct size estimated from standard "noiseless" HVAC equivalent
- New estimates in a "perfect" world
 - Volumetric heat capacity of air (sea level, 0 C) = 0.001297 J/cm³K (for comparison, water is 3 orders of magnitude better)
 - $\circ \quad \Delta T \text{ of 10 C}$
 - 6.5 8 kW
 - Needs 1000 1300 cfm air & a 16" duct

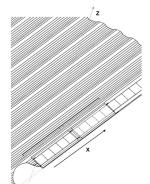

Nothing is perfect. Let's make some new assumptions

IB total air needs

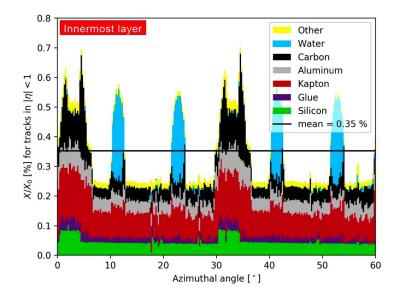
- Assumptions/Estimates
 - Air flow between BP & L0, L0 & L1, L2 & CF shell Ο
 - No (direct) air flowing between L1 & L2 \rightarrow too much space Ο
 - 8 m/s air speed Ο
- Need to move 0.12 m³/s (~250 cfm) air, ~1/2 ton
 - Possible with 10 mm tubes to each section 0
 - # tubes: 12, 16, 20 Ο
- 8 10" supply duct

OB total air needs




- Assumptions/Estimates
 - \circ 4 x 0.5 cm² cross section
 - 8 m/s air speed
- Need to move 0.2 m³/s (~400 cfm) air, ~1 ton
- 10 12" supply duct

Disc total air needs


- Assumptions/Estimates
 - ~1 cm² cross section corrugation (final pitch & thickness TBD)
 - 14 corrugations for ED0 & HD0, 24 for E/HD1-4
 - 10 m/s air speed
- Need to move 0.47 m³/s (~1000 cfm) air, ~2.5 ton
- 14 18" supply duct

Material Budget Implications

- Foam: 5 mm thick 3% RVC foam
 ~0.08% X/X0
- Water cooling pipe: 1 mm ID tube made with 25 μm Kapton walls is ~0.3% X/X0

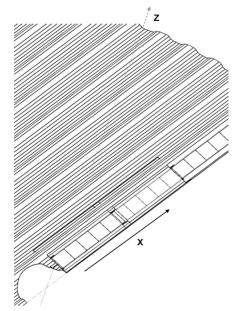
- Average X/X0 of water will be less. Depends on number of pipes & coverage
- Foam is less if placed in specific spots, but might not give much benefit if needed along entire length

Summary/To do

- How to bring in air?
 - High pressure, small tubes?
- Iterate cooling for the discs
 - Foam near LEC? Water cooling?
- Work on water cooling routing
 - \circ $\,$ Maybe simple for OB, more complicated for the discs
- Ongoing and planned (at LBNL)
 - New iteration of corrugation, continuation of corrugated cooling measurements, DPTS
- Next steps \rightarrow implications for material budget, services, structure, etc.
 - Mechanical tests & FEA, CAD modeling, ANSYS thermal & stress tests

Further cooling tests & calculations

Initial calculations done for air and water cooling on discs


- Air is feasible through corrugated channels
- Water provides significantly more cooling power and can be routed near endcaps/peripheries
 - Estimated from ITS2 values

Calculations to be verified with bench tests to develop an adequate cooling model

SVT-specific mockups currently being developed for testing

- Corrugated carbon fiber
- Verify cfm needs
- As power numbers get updated \rightarrow is air enough?
- Water routing specifics related with tiling specifics

