20240111

Flexible Printed Circuits (FPCs) for ePIC-SVT: considerations on design

WP3: Electrical interfaces

marcello.borri@stfc.ac.uk

Outline

- Overview of WP3 Electrical Interfaces.
- Material budget.
- Inner Barrel (IB), Outer Barrel (OB) and Disks layout.
- Sensor design and auxiliary components enabling a low material budget FPC.
- Case study of an FPC layout.
- Manufacturing technology.
- Conclusions

Overview of WP3 Electrical Interfaces

Work package (WP) description:

- Inner Barrel:
 - wire-bonding of bent sensors to FPC, incl. tooling;
 - FPC from end of bent sensors to readout boards;
- Outer Barrel and Disks:
 - wire-bonding of sensor to FPC, incl. tooling;
 - FPC from sensors to end of stave/disks;
 - FPC from end of stave/disks to readout boards;

WP3 started in Sept.2023

WP3: Elec	trical interfaces
3.1	Hybrid integrated circuits (HICs) for IB, OB and disks
3.1.1	IB HIC (L0-2)
3.1.1.1	Specifications of IB HICs (flexible printed circuits (FPCs), mechanical too
3.1.1.2	Design of FPCs and mechanical tools
3.1.1.3	Suppliers evaluation and procurement
3.1.1.4	Prototyping, including testing
3.1.1.5	Iterative improvements of HIC design & assembly techniques
3.1.1.6	Pre-production, including testing
3.1.1.7	Production of detector grade HIC, including QC
3.1.2	OB HIC (L3-4)
3.1.2.1	Specifications of OB HIC (flexible printed circuits (FPCs), mechanical too
3.1.2.2	Design of FPCs and mechanical tools
3.1.2.3	Suppliers evaluation and procurement
3.1.2.4	Prototyping, including testing
3.1.2.5	Iterative improvements of HIC design & assembly techniques
3.1.2.6	Pre-production, including testing
3.1.2.7	Production of detector grade HICs, including QC
3.1.3	Disks HIC (ED0-4, HD0-4)
3.1.3.1	Specifications of ED/HD HICs (flexible printed circuits (FPCs), mechan tools)
3.1.3.2	Design of FPCs and mechanical tools
3.1.3.3	Suppliers evaluation and procurement
3.1.3.4	Prototyping, including testing
3.1.3.5	Iterative improvements of HIC design & assembly techniques
3.1.3.6	Pre-production, including testing
3.1.3.7	Production of detector grade HICs, including QC

Work break-down structure

Material budget

Material budget (1/2)

- Considering the material budget as the main constraint for the FPC design.
- This is because the material budget impacts the physics performance of the detector (e.g. angular resolution of tracks).
- The material budget sets limitations on FPC like no. of layers, and thickness and material of conductors and insulators deployed in manufacturing.
- The break-down of the material budget from ALICE ITS2 and ITS3 is taken as reference.

Material budget (2/2)

Sor	IB	r ímm	1	l [mm]	x/x	0 %	- 	EIC	SVT target
le sen	LO	36	<u> </u>	270	0.05	5	n Si	mater	ial budget
er sca	L1	48		270	0.05 0.05		50un		
Wat	L2	120		270			Only		
ST5	ОВ		r (mm	1]	l [mn	n]	X/X0 %]	
P	Layer 3			270		540		0.25	1
	Layer 4			420		840		0.55	
	DIS	KS	+2	z [mm] -z		-z [mm]		_out [mm]	X/X0 %
Ĭ	Dis	(0	25	50 -2		-250 2		40	0.25
	Dis	(1	4	50 -4		50	4	20	0.25
ľ	Disk 2 70		00 -6		650	420		0.25	
ľ	Disk 3 10		000	-8	350	4	20	0.25	
ľ	Disk 4 13		350	-105		420		0.25	

J. Glover

Current and future tracking and vertexing detectors 7 Nov 2023

FPC overlaps sensor

Stave element	Component	Material	Thickness (µm)	X_0 (cm)	X_0 (%)
HIC	FPC Metal layers	Aluminium	50	8.896	0.056
	FPC Insulating layers	Polyimide	100	28.41	0.035
	Pixel Chip	Silicon	50	9.369	0.053
Cold Plate		Carbon fleece	40	106.80	0.004
		Carbon paper	30	26.56	0.011
	Cooling tube wall	Polyimide	25	28.41	0.003
	Cooling fluid	Water		35.76	0.032
	Carbon plate	Carbon fibre	70	26.08	0.027
	Glue	Eccobond 45	100	44.37	0.023
Space Frame		Carbon rowing			0.018
Total					0.262

tateer material budget HIC.

B Abelev et al and The ALICE Collaboration 2014 J. Phys. G: Nucl. Part.

Phys. 41 087002

ITS2 IB stave length ~270mm, width ~1.5cm, ALPIDE PWR <40m W/cm2

Two layers FPC, w Al tracks, w impedance matched tracks

Material budget & impedance matching

IB, OB and Disks layout

IB: L0, L1, L2 – barrel layout

- L0,L1,L2 only 50um Si: ullet
 - No FPC overlapping sensor;
 - No restrictions in no. of conductive layers in the FPC;
 - FPC made of **Cu tracks and planes**.
- FPC interconnected via wire-bonding to sensor end caps:
 - Left end cap: data, ctrl, clk, pwr, gnd; ٠
 - Right end cap: pwr, gnd;
- Rationale: to **re-use** as much as possible the design from ALICE ITS3; ٠
- If mods to FPCs are required: ٠
 - access FPC design files (Cadence Allegro) and modify them;

FPC wire bonded to curved sensors

Facilities Council

OB: L3, L4 - stave layout

it will impact the material budget of the active area of the Si tracker

Credit E.Sichtermann, N.Apadula **Disks: Electron and hadron - layout configuration**

Assumptions:

- Sensor mounted on front and back sides of the cold plate;
- LEC overlaps REC;
- Services to the disks from outer radius;

FPC will overlap the active area of sensors and it will impact the material budget of the active area of the tracker

Science and Technology **Facilities** Council

Sensor design and auxiliary components enabling a low material budget FPC

FPC overview (only OB and Disks)

- We achieve a low material budget by:
 - designing a 2 layers FPC w a width <=19mm;
 - manufacturing the FPC w Al tracks and planes;
- This is dependent on the activities related to:
 - sensor design (i.e. internal data multiplexing)
 - design of auxiliary components to optimise power and control signal distribution.
- Multiplexing:
 - MOSAIX has a total of 8 diff lines for data transmission.
 - MOSAIX has a total of 8 diff lines for control and clock:
 - Power Management (PM), Slow Control (SC), Synchronisation (SYNC), Global Reset (GRTS), Global Clock (GCLK), Reserve;

- Foot-print per LAS: (16 diff lines) x (500 um/diff line) = 8 mm/LAS
- Foot-print 4 LAS: 8mm x 4 = 32 mm (~1.7 x LAS width (19mm))

Block diagram for a sequence of 4 LAS (1/2)

Technology Facilities Council

Block diagram for a sequence of 4 LAS (2/2)

- A total of 7 differential lines every 4 LAS:
 - 2 diff lines for control;
 - 1 diff line for global clock;
 - 4 diff lines for HS data:
- Foot-print 4 LAS: (7 diff lines) x (500um/diff lines) = 3.5mm
- % fill factor of LAS width (19mm): (3.5/19)*100 = 18%
 - It was 84%+84%=168% originally!
- Signal ratings considerations:
 - Slow control: 5Mb/s (or 10Mb/s);
 - Global clock: 160MHz (or 320MHz);
 - Data speed 5.12 Gb/s (or 10Gb/s TBC);
 - Expected highest $\Delta V \sim 10V$ (($\sim 2.5V / LAS$) x (4 LAS));
 - Highest current ~2.5 A;

Case study of an FPC layout

FPC overview (mainly focussing on OB L4)

- To aim is to produce a semi-quantitative sketch of the layout implementing the circuit described above.
- A sequence of 4 LAS is considered: longest sequence of sensors in the entire SVT.
- Product break down:
 - 4 LAS T5 (2 front; 2 back);
 - Auxiliary ASICs (per LAS: 5 sLDO; 1 SlowControl ASIC);
 - Interposer FPC per LAS
 - Common bus FPC

Disclaimer: I made an assumption on the implementation of the auxiliary ASICs, mainly form the factor.

BOM (so far)

LAS: notes

GDVDD-GDVSS 1.2 to 1.32 1369 Yes Yes THERE IS NO REFERENCE T Substrate bias PSUB -1.2 to 0 THESE IN PREVI US LEC CONNECT

Table 3.11: Power domains of one sensor segment. The substrate bias is common to all the SCHEMES. segments composing a sensor. The nominal operating voltage are referred to the potential of the GAVSS input net. The input currents are obtained assuming the maximum estimated power consumption of the LEC and RSU circuits at 25 °C.

20231120 | WP1.2 Plenary | ER2 Stitched Sensor Design

Assuming:

- LAS is T5 only ٠
- 1 high speed data line ۲
- 5 power domains

"My datasheet"

Pin-out description

	S_GLCK+	Input	down	160MHz (or 320MHz)	CIL		
	S_GLCK-	Input	down				
	S_PMWR+	Input	down	5Mbps (10Mbps)			
	S_PMWR-	Input	down				
	S_PMRD+	Output	up	5Mbps (10Mbps)			
	S_PMRD-	Output	up				
	S_SCWR+	Input	down	5Mbps (10Mbps)			
	S_SCWR-	Input	down		Clow etcl		
	S_SCRD+	Output	up	5Mbps (10Mbps)	Slow curi		
	S_SCRD-	Output	up				
	S_GRST+	Input	down	0			
	S_GRST-	Input	down				
	G_SYNC+	Input	down				
C	G_SYNC-	Input	down				
13	G_RESERVE+	N/A					
	G_RESERVE-	N/A					
	HSDATA+	Output	up	5.12 Gb/s	Data		
	HSDATA-	Output	up		Data		
	SDVDD	Input		1.2 to 1.32 V (services) (227mA)			
	SDVSS	Input					
	GAVDDS	Input		1.2 to 1.32 V (global analogue) (540mA)			
	GAVSS	Input			Dur		
	GDVDD	Input		1.2 to 1.32 V (global digital) (1369mA)	FWI		
	GDVSS	Input					
	TXVDD	Input		1.8 V (serialisers) (200mA)			
	TXVSS	Input					
	PSUB	Input			Sansar bias		
	PSUBGND	Input			Sensor plas		

Physical layout

L

	l (mm)	w (mm)
RSU	21.666	19.564
LEC	4.5	19.564
REC	1.5	19.564
T5 LAS	114.33	19.564
T6 LAS	135.996	19.564

SlowControl ASIC

Assuming:

- 1 SlowControl ASIC per LAS
- The SlowControl ASIC is pwr'd via one of the existing sLDOs
- SlowControl ASIC size: 4mm x 2mm

"My datasheet"

Pin-out description

				1 CONTROL link (down) carries MUX'd:
	S1down+	Input	down	(PMWR, SCWR, RST, SYNC)
	S1down-	Input	down	
				1 link for GCLK
	S2down+	Input	down	Assuming that global clock gets buffered
	S2down-	Input	down	
				1 Ctrl link (up) carries MUX'd
	S1up+	Output	up	PMRD(up) and SCRD(up)
	S1up-	Output	up	
	S_GLCK+	Output	down	160MHz (or 320MHz)
	S_GLCK-	Output	down	
	S_PMWR+	Output	down	5Mbps (10Mbps)
	S_PMWR-	Output	down	
	S_PMRD+	Input	up	5Mbps (10Mbps)
lowCtrlChip	S_PMRD-	Input	up	
	S_SCWR+	Output	down	5Mbps (10Mbps)
	S_SCWR-	Output	down	
	S_SCRD+	Input	up	5Mbps (10Mbps)
	S_SCRD-	Input	up	
	S_GRST+	Output	down	
	S_GRST-	Output	down	
	G_SYNC+	Output	down	
	G_SYNC-	Output	down	
	G_RESERVE+	N/A	N/A	
	G_RESERVE-	N/A	N/A	
				supplied locally from sLDO
				multiple pads
	VDD	Input		Supply voltage and power?
	GND	Input		
DI 1				

Physical layout

sLDO: notes

"My datasheet"

Pin-out description

	Signal		
	I_in	input	2.5 A (or 1.7 A) (Id+ Ia) worst case scenario
	I_out	input	2.5 A (or 1.7 A) (Id+ Ia) worst case scenario
			4 options:
SLDO			SDVDD/SDVSS = 1.2 to 1.32 V (services)
			(227mA)
			GAVDD/GAVSS = 1.2 to 1.32 V (global
			analogue) (540mA)
			GDVDD/GDVSS = 1.2 to 1.32 V (global
			digital) (1369mA)
	Vout	output	TXVDD/TXVSS = 1.8 V (serialisers) (200mA)
			Note: PSUB -1.2 to 0 V not included

Physical layout

I_in		I_out
		Vout
foot print 2mmx2	mm	

Assuming:

- 1 sLDO per pwr domain:
 total of 5 domains
- PSUB current not specified
- sLDO size: 2mm x 2mm

Powe	r Doma	ins and (Currer	nts				CERN
	Supply purpose	Nets	Voltage [V]	Current [mA]	Pads on LEC	Pads of	n REC	
	Services	SDVDD-SDVSS	1.2 to 1.32	227	Yes	Yes	NEW	EXTRA
	Global analog	GAVDD-GAVSS	1.2 to 1.32	540	Yes	Yes	7 PAP	53
	Global digital	GDVDD-GDVSS	1.2 to 1.32	1369	Yes	Yes	THERE	is NO
	Serializers	TXVDD-TXVSS	1.8	200	Yes	No	REFERE	NOE T
	Substrate bias	PSUB	-1.2 to 0				THESE IN	J PREVI US
n S C C	Cable 3.11: Pow egments composi GAVSS input net onsumption of th	er domains of one ng a sensor. The n . The input curre ae LEC and RSU o	sensor segm ominal opera nts are obtai circuits at 25	ent. The subst ting voltage are ned assuming °C.	trate bias is co e referred to the the maximum	emmon t e potent estimate	to all the \leq tial of the ed power	COUNTERION SCHEMES.

Layout (so far)

LAS placement on OB L4 stave.

LAS1 back REC: 1.5mm

Interposer FPC

- The interposer FPC connects the LAS to the auxiliary components
- Assumption: the auxiliary components are mounted directly onto the cold plate (less material budget)
- Assumption: the auxiliary components are mounted mainly on the side of stave for possible cooling optimisations (e.g. cooling pipe underneath)

Interposer FPC

clk+ctrl: ~21% of LAS width (19mm)

data: ~2.6% of LAS width (19mm)

S+GA+GD+TX+PSUB pwr domains: ~76% of LAS width (19mm)

Interposer FPC – voltage drops

	Voltage drops for interposer FPC											
Total avaialble width [mm] 14.5 Total avaialble width w/o PSUB [mm] :		13.5										
	V (min)	V (max)	I (mA)	Al resistivity (ohm*m)	Al tickness (m)	Al length (m)	Width (m)	Al resistance (ohm)	Voltage drop (V)	% wrt V (min)		
SDVDD/SDVSS	1.2	1.32	227	2.65E-08	2.50E-05	3.80E-02	1.41E-03	2.86E-02	6.49E-03	5.41E-01		
GAVDD/GAVSS	1.2	1.32	540	2.65E-08	2.50E-05	3.80E-02	3.35E-03	1.20E-02	6.49E-03	5.41E-01		
GDVDD/GDVSS	1.2	1.32	1369	2.65E-08	2.50E-05	3.80E-02	8.50E-03	4.74E-03	6.49E-03	5.41E-01		
TXVDD/TXVSS	1.8		200	2.65E-08	2.50E-05	3.80E-02	1.24E-03	3.24E-02	6.49E-03	3.61E-01		
PSUB	1.2	6	0.01	2.65E-08	2.50E-05	3.80E-02	1.00E-03	4.03E-02	4.03E-07	3.36E-05		
Total w/o PSUB	N/A	N/A	2336	N/A	N/A	N/A	N/A	N/A	N/A	N/A		

Negligible voltage drops (<1%) assuming:

- Track width for PSUB 1mm;
- Track width for S,GA,GD,TX split proportionally wrt the specified current;
- 25um Al;
- Longest path in interposer 19*2mm=38mm;

all LAS + interposer FPC + all auxiliary components +

Common bus FPC

- The common bus FPC connects the auxiliary components to the end of stave connections.
- For the Outer barrels, it runs on top of the sensors (shown here); •

Showing only common bus FPC:

Common bus FPC: i_sLDO track

Assumptions for the selection of the i_sLDO track width:

• 5mm track width leading to ~3% voltage drop over over a lenght of 150mm (i_sLDO = 2.5A)

Voltage drops for common bus FPC											
sLDO	V (target)	V (max)	I (A)	Al resistivity (ohm*m)	Al tickness (m)	Al length (m)	Width (m)	Al resistance (ohm)	Voltage drop (V)	% wrt V (target)	
Opt.1	2.5	ТВС	2.5	2.65E-08	2.50E-05	1.50E-01	1.00E-03	1.59E-01	3.98E-01	1.59E+01	
Opt.2	2.5	ТВС	2.5	2.65E-08	2.50E-05	1.50E-01	2.00E-03	7.95E-02	1.99E-01	7.95E+00	
Opt.3	2.5	ТВС	2.5	2.65E-08	2.50E-05	1.50E-01	3.00E-03	5.30E-02	1.33E-01	5.30E+00	
Opt.4	2.5	ТВС	2.5	2.65E-08	2.50E-05	1.50E-01	4.00E-03	3.98E-02	9.94E-02	3.98E+00	
Opt.5	2.5	ТВС	2.5	2.65E-08	2.50E-05	1.50E-01	5.00E-03	3.18E-02	7.95E-02	3.18E+00	

Considerations on material budget

Sensor + Common bus + Interposer FPCs;

The majority of the area is equal to or lower than the target material budget.

Improvements are possible for the regions above the target material budget: exploit synergy w mechanics layout, improved design maturity of auxiliary components, consider Si interposer etc...

	Components	Thickness (um)	Material	X0 (cm)	XO (%)	Comment
	FPC metal layers	50	Al	8.897	0.056	25um/layer x 2 layers = 50um
	FPC insulating layers 1	75	UPILEX-S75	28.57	0.026	UPILEX-S75 is a type of polyimide
HIC	FPC insulating layers 2	40	Coverlay	28.57	0.014	20um/layer x 2 layers = 40um, coverlay is polyimide
	Pixel Chip	50	Si	9.37	0.053	
	Glue	50	Araldite2011	39.07	0.0128	ATLAS assumes phenol epoxy C6 H6 O
	Total (FPC	+ Pixel chip + glue)			0.163	
	Total w/o gl	ue (FPC + Pixel chip	o)		0.150	
					consider Si interposer as option:	
	Tot	al FPC only	0.096	Si 50um thin equates to X0 (%) 0.053.		
				N.B. ~45% saving in material budget		

Si interposer (1 layer): examples

Common bus FPC (disk)

- For the disk, it runs aside the sensors (shown here);
- Dog leg approach, not considers here (yet...).

- In dog leg approach, the common bus FPC is spitted into shorted segments;
- Each shorter segment is merged with the interposer FPC;
- This approach could lead to better modularity.

Technology

Technology

- Limited supplier choice for Al based FPCs:
 - CERN;
 - LTU (UKR);
- LTU:
 - Talk by LTU to ePIC SVT community on 03 Oct 2023;
 - Established track record in Al FPCs for Si trackers;
 - [TBC]no vias, tab bonding instead to connect tracks across layers;
 - LTU is keen to get involved;
 - Ad-hoc meeting with LTU & Daresbury Lab on 26/01/2024;

Materials for ultra-low mass flexible interconnection elements

Some features of assembly process

Main process at assembling components of modules is an ultrasonic Single point TAB bonding (SpTAB, manual or automatic) of aluminium traces to aluminium contact pads on chip, sensor or flexible cable with further encapsulating by glue

Schematic close-up views of some different SpTAB areas

Outlook

- Prototype of common bus:
 - Design first prototype similar to what presented today
 - Material of FPC <0.096 % X/X0
 - Mtg w LTU on 26/01/2024, to use LTU for prototype.
 - Finalise test plan:
 - High speed data: signal propagation (inc. signal attenuation over XX lenght);
 - CLK propagation (inc. jitter);
 - Some kind of comparison w and w/o electrical bridges;
 - Some kind of comparison w and w/o bending;
 - Max voltage and current Vs dielectric insulation limits;
 - Finalise test set-up:
 - FR4 interface board to connect to KCU105?
 - Select suitable oscilloscope.
 - Some scripting...

Conclusion

- WP3 Electrical Interfaces is working towards the specification and design of the FPCs.
- FPC dependency on material budget and stave/disk mechanical layout requirements was presented.
- The benefits of multiplexing and serial powering were introduced.
- A prototype will be produced and tested to include results in the TDR.
- Most likely LTU will be the supplier for the first prototype for TDR.

Thank you

Facebook: Science and Technology Facilities Council Twitter:@STFC_matters

YouTube: Science and Technology Facilities Council

Back up

Points to discuss but not included

• Modularity of a potential sensor module:

Modularity important for fault detection and early rejection. Beneficial for an efficient production flow. Modularity to be addressed as part of design for manufacturing.

• Is wire-bonding the preferred interconnection technique? i.e. Is the interconnection know-how mainly on wire bonding in our community?

Points to discuss but not included

SVT Readout (inspired by ITS3 Readout)

Solar Ridge National Laboratory

