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The Large Hadron Collider

• Located on the border of France and Switzerland near Geneva
- Hosted by European Organization for Nuclear Research (CERN)

• Currently accelerates protons to 6.8 TeV
- Collides ~  protons per bunch every 25 ns

• Collisions occur at 4 points (detectors) along the LHC
- Today we will focus on the Compact Muon Solenoid (CMS) 
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The Compact Muon Solenoid (CMS)

• We measure many particles of varying energies, flavors, charges, and types
• CMS is a general purpose detector and optimized to measure a wide range of particles
• Actively preparing a massive upgrade for the High Luminosity-LHC era
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The HL-LHC challenge
• HL-LHC will deliver 3-4 times more 

instantaneous luminosity 
- Causing enhanced pileup 

• Aiming to have 10x more data by 2040
• CMS has to be upgraded 
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From ATLAS

HL-LHC
140-200 pileup

LHC
10-60 pileup

https://www.researchgate.net/figure/Pileup-simulations-in-conditions-akin-to-the-LHC-and-current-ID-top-as-well-as-HL-LHC_fig4_325961875
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The Mip Timing Detector

5

Barrel Timing Layer (BTL)
LYSO + SiPM

Endcap Timing Layers (ETL)
LGADs
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The MTD Endcap Timing Layer

• 2 disks at each endcap: 2 hits per track
•Single-hit resolution < 50 ps → track resolution < 35 ps
• Will need ~8000 modules covering ~14 m²
- Novel Low Gain Avalanche Diodes (LGAD) sensor
- Novel ASIC readout chip (ETROC)
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Low Gain Avalanche Detectors
• High occupancy & radiation

→ Highly granular silicon detector
• LGADs: novel ultra-fast silicon detectors
- Moderate internal gain (10-30)
- Thin (50 micron depletion region)

• ETL: (1.3 mm)2 pads, 16x16 channels (2.1 cm)2 
sensors

3.2. Silicon sensors 101

Figure 3.5: A cross-section diagrams comparing a standard Silicon detector and an Ultra-Fast
Silicon Detector. UFSDs have an additional p implant providing the larger electric field needed
for charge multiplication.

each pad has an extension of at least 1 mm in each direction, while the thickness is2616

about 50 µm, yielding an almost perfect parallel plate configuration. Distortion due2617

to non saturated drift velocity is minimized by operating the sensor at a bias voltage2618

where the carriers’ velocity is saturated.2619

• sTDC: the effect of the TDC binning is discussed in Sec. 3.3.5.2620

3.2 Silicon sensors2621

3.2.1 Design and specifications2622

The design requirements for a hermetic MIP precision timing detector in the CMS endcap re-2623

gion present a number of challenges. What is needed is a uniform and efficient device capable2624

of operating with sufficient radiation resistance to maintain performance throughout the life-2625

time of the HL-LHC. To meet these needs the ETL will be instrumented with Ultra-Fast Silicon2626

Detector (UFSD), planar silicon devices based on the LGAD technology [21, 22].2627

UFSDs are planar silicon sensors incorporating a low, controlled, gain in the signal formation2628

mechanism, see Figure 3.5. Charge multiplication in silicon sensors happens when the charge2629

carriers are in electric fields of the order of E ⇠ 300 kV/cm. Under this condition the electrons2630

(and to less extent the holes) acquire sufficient kinetic energy to generate additional e/h pairs.2631

A field value of 300 kV/cm can be obtained by implanting an appropriate charge density that2632

locally generates very high fields (ND ⇠ 1016/cm3). The gain has an exponential dependence2633

on the electric field N(l) = Noea(E)l , where a(E) is a strong function of the electric field and l2634

is the path length inside the high field region. The gain layer is realized through the addition2635

of a p-type implant and, to avoid breakdown, its lateral spread is controlled by deep n doped2636

implant, called JTE. Typical gain values are in the 10-30 range, modest compared to gains of2637

thousands or more in APDs or SiPMs.2638

Three vendors have successfully produced optimized UFSDs which have been tested by CMS2639

and are being considered for providing the ETL sensors, including Centro Nacional de Mi-2640

croelectronica (CNM), Barcelona [21, 56, 57], Fondazione Bruno Kessler (FBK) [58, 59], and2641

Hamamatsu Photonics (HPK) [60, 61].2642

Achieving good time performance at low gain requires silicon pixel sizes typically less than a2643

few mm2, to limit the sensor capacitance, implying that a large number of pixels are required2644

to cover the 7 m2 of each ETL endcap. The design studied in the 2017 CMS MTD Technical2645

Proposal (TP) used very large sensors, 5 cm ⇥ 10 cm, with 3 mm ⇥ 1 mm pixels. Our R&D and2646
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~300 μm

~50 μm

as the tracker impact parameter resolution. In both the DC-LGAD edge fit and the binary readout
methods, the resolution obtained is in the range of 10 µm to 12 µm, somewhat at tension with the
5 µm result obtained from the Kalman filter. Since the Kalman filter resolution does not include
contributions from the alignment with the device under test, we take its estimate as a lower bound.
Conversely, since the two other methods may contain additional systematic errors, we take their
estimates as upper bounds on the resolution. As result, we limit the tracker resolution to a range of
roughly 5–10 µm and consider this range to interpret the observed AC-LGAD performance. For the
AC-LGAD resolutions presented in all plots and figures in this paper, we subtract a contribution of
6 µm, representing a conservative choice for the tracker resolution.

4 Experimental results

Digitized waveforms of the analog signals were recorded by the oscilloscope for each sensor tested,
as described in Section 3. We analyze the waveforms to measure the amplitude and arrival time of
pulses in each individual channel. Waveforms for a typical example event produced by the BNL
2020 strip sensor are shown in Fig. 5. In general, the waveforms from each sensor have similar
shapes, which allows reconstructing the amplitude and time for each charged particle hit using the
same algorithm for all sensors.
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Figure 5: Example waveforms for the BNL 2020 strip sensor (left) showing the measured pulse
shape and size for all channels in an event with a proton impacting the third readout strip. A labeled
photograph of the six readout strips is shown on the right with a red dot indicating the location of
the proton hit for the example waveforms shown on the left.

Events were selected based on two types of requirements. First, only events with high-quality
tracks and MCP-PMT hits are considered, to ensure reliable references for the proton impact
parameter and arrival time. We further require that the track points through the interior of the
readout region of each sensor, to exclude clusters that are only partially reconstructed at the edges.
For example, for the BNL 2020 strip sensor shown in Fig. 5, only events with tracks pointing
between strips 2–5 are considered for the analysis. Then, we define two amplitude thresholds that

– 6 –

AC-LGAD
Pulse shape

https://arxiv.org/abs/1704.08666
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Low Gain Avalanche Detectors
• High occupancy & radiation

→ Highly granular silicon detector
• LGADs: novel ultra-fast silicon detectors
- Moderate internal gain (10-30)
- Thin (50 micron depletion region)

• ETL: (1.3 mm)2 pads, 16x16 channels (2.1 cm)2 
sensors
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3.2. Silicon sensors 101

Figure 3.5: A cross-section diagrams comparing a standard Silicon detector and an Ultra-Fast
Silicon Detector. UFSDs have an additional p implant providing the larger electric field needed
for charge multiplication.
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3.2. Silicon sensors 101

Figure 3.5: A cross-section diagrams comparing a standard Silicon detector and an Ultra-Fast
Silicon Detector. UFSDs have an additional p implant providing the larger electric field needed
for charge multiplication.
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Traditional silicon detector

Low Gain Avalanche Detector
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~300 μm

~50 μm
• High occupancy & radiation

→ Highly granular silicon detector
• LGADs: novel ultra-fast silicon detectors
- Moderate internal gain (10-30)
- Thin (50 micron depletion region)

• ETL: (1.3 mm)2 pads, 16x16 channels (2.1 cm)2 
sensors
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Impact of radiation
• Expect some areas of the detector get a dose up to 
• Throughout the lifetime of ETL we will need to increase the bias voltage 

to compensate and maintain nominal time resolution
- Can we just keep doing this?
• No, the sensors will die

• We started to call these deaths “Single Event Burnouts” (SEB)
- Left behind a hole in the sensor
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LGAD Single Event Burnouts

• Death tends to leave “cross” shape 
crater where charge particle track 
points
- Not always found (different levels 

of severity?)
• Death has interesting ringing 

waveforms

• For 20 μm thick sensor expect 
death at ~230 V

• When operated at high fields ~11.5 V/μm LGADs are 
susceptible to single event burnout (SEBs)
- Active area of study
- Low rate results (38th RD50)
- High rate results (TREDI 2022)
- ATLAS results (TREDI 2023)
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LGAD Readout Electronics: ETROC

ETROC1 – Preliminary Test Beam Results

4/17/2021 Zhenyu Ye @ UIC 11
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From preliminary analysis of the data from 
ongoing beam test at FNAL, the resolution 
of single LGAD+ETROC1 devices with 
large signal amplitude is 42-46 ps.  

ETROC1 – Preliminary Test Beam Results

4/17/2021 Zhenyu Ye @ UIC 11
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ETROC1ETROC1 Test Board

From preliminary analysis of the data from 
ongoing beam test at FNAL, the resolution 
of single LGAD+ETROC1 devices with 
large signal amplitude is 42-46 ps.  Extract single-layer resolution from 3-layer ΔT:

• Timing measurement performed by ETROC ASIC (ToA + ToT 
correction)

• Test beam results with LGAD and ETROC1 prototype: σ = 42-46 ps
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Building the Full System
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Building the Full System

• Full system did not work out of the box
- System is very sensitive to thermal and pickup noise

• After appropriate modifications to module design we now achieve sufficient performance
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Building the Full System

• Full system did not work out of the box
- System is very sensitive to thermal and pickup noise

• After appropriate modifications to module design we now achieve sufficient performance
• Observe decrease noise for bump bonded devices vs. wire bonded (~50%)
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4D tracking research

• The CMS ETL is a stepping stone to 4D trackers
• AC-coupled LGADs for the ePIC detector
• Need to push the limit of 4D trackers for future colliders

3.2. Silicon sensors 101

Figure 3.5: A cross-section diagrams comparing a standard Silicon detector and an Ultra-Fast
Silicon Detector. UFSDs have an additional p implant providing the larger electric field needed
for charge multiplication.

each pad has an extension of at least 1 mm in each direction, while the thickness is2616

about 50 µm, yielding an almost perfect parallel plate configuration. Distortion due2617

to non saturated drift velocity is minimized by operating the sensor at a bias voltage2618

where the carriers’ velocity is saturated.2619

• sTDC: the effect of the TDC binning is discussed in Sec. 3.3.5.2620

3.2 Silicon sensors2621

3.2.1 Design and specifications2622

The design requirements for a hermetic MIP precision timing detector in the CMS endcap re-2623

gion present a number of challenges. What is needed is a uniform and efficient device capable2624

of operating with sufficient radiation resistance to maintain performance throughout the life-2625

time of the HL-LHC. To meet these needs the ETL will be instrumented with Ultra-Fast Silicon2626

Detector (UFSD), planar silicon devices based on the LGAD technology [21, 22].2627

UFSDs are planar silicon sensors incorporating a low, controlled, gain in the signal formation2628

mechanism, see Figure 3.5. Charge multiplication in silicon sensors happens when the charge2629

carriers are in electric fields of the order of E ⇠ 300 kV/cm. Under this condition the electrons2630

(and to less extent the holes) acquire sufficient kinetic energy to generate additional e/h pairs.2631

A field value of 300 kV/cm can be obtained by implanting an appropriate charge density that2632

locally generates very high fields (ND ⇠ 1016/cm3). The gain has an exponential dependence2633

on the electric field N(l) = Noea(E)l , where a(E) is a strong function of the electric field and l2634

is the path length inside the high field region. The gain layer is realized through the addition2635

of a p-type implant and, to avoid breakdown, its lateral spread is controlled by deep n doped2636

implant, called JTE. Typical gain values are in the 10-30 range, modest compared to gains of2637

thousands or more in APDs or SiPMs.2638

Three vendors have successfully produced optimized UFSDs which have been tested by CMS2639

and are being considered for providing the ETL sensors, including Centro Nacional de Mi-2640

croelectronica (CNM), Barcelona [21, 56, 57], Fondazione Bruno Kessler (FBK) [58, 59], and2641

Hamamatsu Photonics (HPK) [60, 61].2642

Achieving good time performance at low gain requires silicon pixel sizes typically less than a2643

few mm2, to limit the sensor capacitance, implying that a large number of pixels are required2644

to cover the 7 m2 of each ETL endcap. The design studied in the 2017 CMS MTD Technical2645

Proposal (TP) used very large sensors, 5 cm ⇥ 10 cm, with 3 mm ⇥ 1 mm pixels. Our R&D and2646

Low Gain Avalanche Detector (LGAD) AC-coupled LGAD

?
σx = 375 μm
σt = 30 ps

σx = 20 μm
σt = 20 ps

σx < 5 μm
σt < 10 ps

CMS ETL at EIC FCC or μC
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Summary
• The upgrade for HL-LHC is fast approaching

• Endcap timing layer will use LGADs readout 
by the novel ETROC

• Overcame many challenges and well 
positioned for production

• Timing detectors have a bright future

• Thank you!
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Backup

18
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LHC Timeline

HL-LHC

We are here
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Strips Pixels
LGADs

Strips

20

Fermilab 4D-trackers test beam infrastructure 
• Permanent setup in FNAL test beam facility (FTBF)
- Movable: slide in and out of beamline as needed, parasitic use of beam
- Environmental controls: sensor temperature (-25 C to 20 C), and humidity, monitoring
- Time reference with ~ 10 ps resolution (MCP)
- DAQ: high bandwidth, high ADC resolution 8-channel scope
- Record 20k events during 4 s spill, 
- Tracker with ~5 μm resolution

• Developed readout boards for the characterization of LGADs
- Without complex ASIC and DAQ 

Mobile rack

120 GeV  
proton

FTBF strip and pixel telescope

AC-LGAD
Trigger scintillator

MCP-PMT

as the tracker impact parameter resolution. In both the DC-LGAD edge fit and the binary readout
methods, the resolution obtained is in the range of 10 µm to 12 µm, somewhat at tension with the
5 µm result obtained from the Kalman filter. Since the Kalman filter resolution does not include
contributions from the alignment with the device under test, we take its estimate as a lower bound.
Conversely, since the two other methods may contain additional systematic errors, we take their
estimates as upper bounds on the resolution. As result, we limit the tracker resolution to a range of
roughly 5–10 µm and consider this range to interpret the observed AC-LGAD performance. For the
AC-LGAD resolutions presented in all plots and figures in this paper, we subtract a contribution of
6 µm, representing a conservative choice for the tracker resolution.

4 Experimental results

Digitized waveforms of the analog signals were recorded by the oscilloscope for each sensor tested,
as described in Section 3. We analyze the waveforms to measure the amplitude and arrival time of
pulses in each individual channel. Waveforms for a typical example event produced by the BNL
2020 strip sensor are shown in Fig. 5. In general, the waveforms from each sensor have similar
shapes, which allows reconstructing the amplitude and time for each charged particle hit using the
same algorithm for all sensors.
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Strip 1
Strip 2
Strip 3
Strip 4
Strip 5

FNAL 120 GeV proton beam BNL2020, 220V

1 2  3  4  5  6

Figure 5: Example waveforms for the BNL 2020 strip sensor (left) showing the measured pulse
shape and size for all channels in an event with a proton impacting the third readout strip. A labeled
photograph of the six readout strips is shown on the right with a red dot indicating the location of
the proton hit for the example waveforms shown on the left.

Events were selected based on two types of requirements. First, only events with high-quality
tracks and MCP-PMT hits are considered, to ensure reliable references for the proton impact
parameter and arrival time. We further require that the track points through the interior of the
readout region of each sensor, to exclude clusters that are only partially reconstructed at the edges.
For example, for the BNL 2020 strip sensor shown in Fig. 5, only events with tracks pointing
between strips 2–5 are considered for the analysis. Then, we define two amplitude thresholds that

– 6 –

8-channel oscilloscope, 
2 GHz, 10 GSa/s 

FTBF

Wilson Hall

Main Injector

Tevatron

BoosterLinac

Meson 
Beam Line

Fermilab Accelerator Complex
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Burnout in PIN diode

25− 24− 23− 22− 21− 20− 19− 18− 17− 16− 15−
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amp[2]>10.0:y_dut[9]:(-x_dut[9]) {ntracks==1&&nplanes>10&&npix>0&&fabs(xResidBack)<500&&fabs(yResidBack)<500}

Even diodes die the same way→ gain is not needed.

Gamma-irradiated HPK PIN diode (50 micron)
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High-rate survival demonstration

• Next performed a test beam to replicate SEB death for 20 sensors 
• Needed to expose sensors to emulate lifetime exposure levels 

• Bottom line can not operate 50 μm thick sensor above 550 V

22

High-rate area

Test beam facility

120 GeV protons

LGAD cold box
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Module assembly using a gantry

Step 1: Apply film to module PCB
Step 2: Pick and place sensor+ETROC

Step 3: Cure film in vacuum oven

Step 4-5: Wirebond and Encapsulate 

Step 6-8: Apply film to baseplate, 
Pick and place, and cure film   

Assembled Module   

Nordson Dispenser


