https://indico.bnl.gov/event/20473/sessions/6737/#20240109

AC-LGAD sensor production at BNL

Gabriele Giacomini

January 9th 2024

January 2024 ePIC Collaboration Meeting – Argonne National Laboratory

DC-LGAD vs AC-LGAD

Low-Gain Avalanche Diodes show good timing resolution (30ps) but poor spatial resolution, due to large dead area at the pixel border.

4D detector not possible \rightarrow AC-LGAD needed

Metal (back contact)

Capacitively-Coupled Low-Gain Avalanche Diodes have large uniform area for 100% fill factor (no dead areas), and same timing resolution. Excellent spatial resolution when signal sharing is used to interpolate hit position. Process modification needed to pass from LGAD to AC-LGAD but still feasible in standard Clean Room.

BNL Clean Room for silicon sensors

LGAD and AC-LGAD can be fabricated at BNL, using standard tools. Ion Implantation is outsourced: paramount importance process step that dictates gain.

All silicon process done in BNL Instrumentation Division Class-100 Clean Room

Design + TCAD + process flow: all in house

DC-LGAD

In parallel to AC-LGAD, DC-LGAD wafer fabrication for test purpose.

- existing photomask set.

Test on small devices:

- Single channel LGADs (1.3 mm x1.3mm) and diodes
- 20, 30, 50um thick wafers

Wafer #	Thick (um)		VB D (V)
3055	50	1MeV	280
3106	30	1MeV	250
3078	20	1MeV	140
3058*	50	380keV	200
3057	50	380keV	170
3109*	30	380keV	130
3108	30	380keV	110
3082*	20	380keV	80
3079	20	380keV	90

Alternative substrate contact (p

*small furnace

⁴

Gain measurements

Low-noise charge measurements with charge sensitive preamplifier (shaping time ~ 1us)

Gain measurements

- Low-noise by CSA read-out (external MCA)
- LGADs/diodes tested with 90Sr (and other particles)
 - From $V_{depletion}$ to V_{BD}
- Running 24/7 (due to low-activity of sources)
- 1MeV- LGADs are being mounted on ceramic carrier

• UCSC and FNAL board are used as well

AC LGAD strip

12	Brookhaven
	National Laboratory

multiplicity	mm x mm	Pitch (um)	Gap (um)
7	5x5	500	400
7	5x5	500	450
4	5x10	500	400
4	5x10	500	450
4	5x10	700	600
4	5x10	Zig Zag	
5	5x25	500	400/450
5	5x25	500	400 (I=2 or 2.5cm)

Wafer #	Thick (um)		VBD (V)
3051	50	380keV	170
3052	50	380keV	180
3074	20	380keV	100
3075	20	380keV	90

Uniformity of gain was improved starting from this batch

EICROC AC-LGAD

VBD

(V)

160

380

TBC

80

160

160

110

200

TBC

380keV

380keV

Brookhaven

National Laboratory

.

3056	50	1 MeV
3080	20	380ke\
3081*	20	380ke\
3077	20	1MeV
3104	30	380ke\
3105*	30	380ke\
3107	30	1MeV
*long an	nealing	

Wafer

#

3053

3054*

Thick

(um)

50

50

As for DC-LGAD, gain layer dose (which sets the VBD) comes by TCAD simulations (Y. Zao, UCSC): SIMS profiles of n+ + gain layer simulated implant.

New Metal mask for EICROC AC-LGAD

Requires the redesign of just two masks: METAL and passivation opening.

- 4x4 array Pitch 500um : cross, circle, squares W=100, 200, 300, 400 um
- 3x3 array Pitch 700um: cross, circle, squares W= 100, 200, 300, 400 um
- 4x4 array Pitch 400um: cross, circle, triangular arrays
- ... and larger devices

Some parameters: C_{AC} ~ 300pF/mm² R_nres ~ 1.4kOhm cm

Outlook

- Fabrication of optimized AC-LGADs
 - Obliging inputs from collaborators
 - Higher gain
 - Higher yield
 - Double-metal
 - TCAD simulations (UCSC)
- Test (TCT/gain)
 - Preliminary I-V & C-V tests before device distribution
- Q&A stress test
 - Cycling through large temperature range
 - Irradiation in collaboration with UNM and LANL
- Mounting PC boards for collaborators
 - Tests on site
 - EICROC tests

