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Low gain avalanche diodes

• Silicon low-gain avalanche diodes (LGADs) are studied by 
the CMS and ATLAS experiments for their endcap timing 
detector upgrades
• Thin sensors, typical thickness 50 µm

• Low to moderate gain (5-50) provided by p+ multiplication layer

➢ Timing resolution down to ca. 20 ps

➢ Good radiation hardness up to 1015 neq/cm2

• A more recent development: AC-coupled LGAD

H. F.-W. Sadrozinski et al, 4D tracking with ultra-fast silicon detectors, Reports on Progress in Physics 2018, 81, 026101 
CMS Collaboration, A MIP Timing Detector for the CMS Phase-2 Upgrade, CERN-LHCC-2019-003, 2019
ATLAS Collaboration, A High-Granularity Timing Detector for the ATLAS Phase-II Upgrade, CERN-LHCC-2018-023, 2018
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AC-coupled low gain avalanche diodes

• In AC-coupled LGADs, also referred to as Resistive Silicon Detectors (RSD), the 
multiplication layer and n+ contact are continuous, only the metal is patterned:

➢ The signal is read out from metal pads on top of a continuous layer of dielectric

➢ The underlying resistive n+ implant is contacted only by a separate grounding 
contact 

➢ No junction termination extension: fill factor ~100 

• The continuous n+ layer is resistive, i.e. extraction of charges is not direct

➢ Mirroring of charge at the n+ layer on the metal pads: AC-coupling

➢ Strong sharing of charge between metal pads

➢ Extrapolation of position based on signal sharing – finer position resolution for 
larger pitch, also allowing for more sparse readout channels
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G. Giacomini et al., Fabrication and performance of AC-coupled LGADs, JINST 2019, 14, P09004
A. Apresyan et al., Measurements of an AC-LGAD strip sensor with a 120 GeV proton beam, JINST 2020, 15, P09038

S. M. Mazza, An LGAD-Based Full Active Target for the PIONEER Experiment, Instruments 2021, 5(4), 40
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ePIC TOF-PID sensor development

• Current sensor design baseline:
• Barrel: strips, 500 µm pitch and 1 cm length
• Forward (and Roman Pots): pads, 500 x 500 µm 

• First design plans based on earlier generic AC-LGAD productions by FBK, 
BNL, HPK
• Various electrode geometries, typically smaller sizes
• Resistive n-layer and dielectric capacitance variation by HPK and FBK

• More targeted production(s) by BNL to evaluate strip pitch and width

• Beginning to fabricate 20 µm sensors in addition to the standard 50 µm

• Recent (May 2023) production by HPK aimed at EIC sensor specifications

• Focusing on 500 µm pitch baseline

• BNL productions focusing on gain layer engineering
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HPK sensor production for the EIC

HPK production splits:
• E and C type n-layer (E resistivity higher, C lower)
• Dielectric capacitance 240 and 600 pF/mm2

• 20 and 50 µm bulk thickness for 600 pF/mm2

• Strips:
• 2, 5, 10, 20, 25 mm length
• 50, 100 µm width

• Pixels:
• 150, 300, 450 µm pixel size

Wafer N+ Dielectric C Thickness

W02 E 240 50

W04 C 240 50

W05 E 600 50

W08 C 600 50

W09 E 600 20

W11 C 600 20
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IV and CV measurements

• Current-Voltage
• Breakdown voltage

• Leakage current at operating bias voltage

• Capacitance-Voltage
• Depletion voltage of gain layer

• Gain layer doping 

• Sensor capacitance(s)

• Both: spread in properties over wafer / sensor production, radiation damage
➢ Decrease of gain layer doping = gain; increase in leakage current
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IV measurements

• Leakage current of unirradiated sensors is < 20 nA before 
breakdown

• Consistent over different samples of the same wafer 
(different AC metal size should not impact)

• Breakdown voltage ca. 120 V for 20 µm-thick sensors, 210 V
for 50 µm-thick sensors

• Slightly higher breakdown voltage for C-type n+ layer
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CV measurements

• Different capacitances in 
sensors: 
• n+ electrode to backplane 

(standard, ‘DC’ capacitance 
measurement) 

• AC pad or strip to backplane

• Interpad or interstrip 
capacitance

• Dielectric capacitance
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CV measurements

• Depletion voltage of gain 
layer: ca. 48 V

• Relatively highly doped gain 
layer: in BNL sensor 
productions, typically around 
25 V

• Sensor capacitance scales
with Si thickness (by
geometry)
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CV measurements

• AC capacitance scales with Si 
thickness, metal width and 
strip length

• Frequency dependence of 
capacitance is observed: what 
is the effective input 
capacitance to the front-end?
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CV measurements

• Interpad/interstrip 
capacitance scales 
with strip length 
and width, but is 
independent of 
bulk thickness

• Dielectric
capacitance and 
n+ resistivity 
influence AC and 
interstrip 
capacitances
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Laser studies

• Infrared laser scanning TCT (Transient Current Technique): 
sensor is illuminated with a focused laser to simulate signal 
generated by a minimum-ionizing particle

• Averaged waveform at each x-y point

➢ Monitoring of sensor response uniformity, gain ‘hotspots’

➢ Time-of-arrival information and jitter based on laser reference
• No Landau fluctuations of signal charge as in the case of a charged 

particle

➢ Impact of sensor geometry, coupling dielectric, and n+ layer 
resistivity on signal sharing

--- 50 µm
--- 100 µm      

HPK 2 cm strip sensor
Amplitude normalized
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HPK strip sensors: n-layer resistivity

• Expected to be one of the most important parameters in AC-LGADs

• Not fully conclusive results in earlier sensors

• Effect very clearly visible in the HPK production: show-stopper for strip sensors, 
however increased sharing may be needed in small pad sensors in order to not 
lose efficiency at the relatively large 500 µm pitch

• Significant long-distance sharing in the C type sensor, increasing towards the 
edge n-layer contact: how would this affect larger – in this case wider – sensors 
even if strip length is restricted?
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HPK strip sensors: strip length

• Larger signal sharing has been observed in longer strips – was not 
considered a factor originally

• Promising efforts to replicate this in TCAD simulation and correlate it to 
strip capacitances and resistances

• For E600 type sensors, strip length is indeed confirmed to increase 
charge sharing with the neighboring strip, however likely not to a 
detrimental degree (< 15 % at the next strip) even for 2 cm long 
samples

• From this point of view, it could be considered to use longer strips in the 
BTOF
• Limitation: decrease of amplitude and time delay along the strip
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HPK strip sensors: signal sharing

In terms of signal sharing  / 
signal amplitude:

• Signal sharing is strongly 
impacted by the n-layer 
resistivity – almost 20 % 
more for lower resistivity, 
as well as different long-
range behavior

• Strip length increases signal 
sharing, but signal from 
primary channel decreases 
down to ~10% at the next 
neighbor

• Roles of sensor bulk 
thickness, strip width, 
dielectric capacitance are 
less significant
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HPK strips pmax summary

• Pulse amplitude is governed by the gain → strongly dependent 
on bias voltage

• Comparison at the same gain may involve different bias voltages, 
especially of 20 µm vs 50 µm sensors

• Following and backup slides: showing a few excerpts of the 
collected dataset below
• N.B.: laser data does not include data under the metal electrode
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Pmax: 20 µm and 50 µm thickness

• Different electric field and gain in 20 
µm and 50 µm substrates: steeper 
gain curve for thinner substrate, 
signal amplitudes highly depending 
on bias voltage

• 200+ mV signal can be obtained in 2 
cm strip sensors
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• Smaller main hit signal amplitude 
in C type compared to E type

• Impact of strip length less 
conclusive for E type in our data

• 2 cm strip still provides large 
signals
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Near-future sensor R&D topics

• Quantification of reduced signal amplitude and timing 
delay in long strips 

• Charge sharing along (parallel to) the strip
• Time-of-arrival and timing resolution parallel to a strip
• Systematic studies on pad sensors, intrinsic position 

reconstruction based on charge sharing

➢ Also studied in FNAL test beam

• Angular dependence of abovementioned properties: 
BTOF modules have a nominal tilt angle of 18 degrees 
– impact on hit / cluster signal has not been studied in 
AC-LGADs
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Pad pitch and size

• In AC-LGADs, the signal is constant in the area under 
the metal electrode – signal sharing with the next 
neighboring segments cannot be applied, which limits 
the position and timing reconstruction
➢ Motivates to decrease metal size
➢ Additional benefits in terms of reduced AC capacitance

• Increase in pitch would allow a reduction in the 
number of readout channels

• Concerns: sufficient main hit signal (charge and/or 
pulse amplitude)? Loss of signal between pads → 
improvement of reconstruction coming at cost of 
performance?
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Larger pad pitch experiment

• Approach: leave some pads in a 4x4 pad array with 500 µm 
pitch unbonded and floating to mimic 1000 µm pitch, monitor 
pulse maximum as function of distance

• Using smallest currently available pad size in the HPK 
production: 150x150 µm. Here, a C600 sensor (more signal 
sharing) with bulk thickness 20 µm (faster rise time)

Regular 500 µm pitch
‘1000 µm’ pitch
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Larger pad pitch experiment

• Significant loss of signal amplitude between pads at 500 µm, more 
pronounced for the double distance: in this sensor, ca. 27% at the 
center point between adjacent pads, ca. 65% for ‘1000 µm’ pitch

• The effect of the bias voltage on relative signal sharing is minimal 
(observed throughout this production)

• Whether smaller signal, worse SNR and jitter are acceptable depends 
on what gain the sensor is operated at = what absolute signal remains, 
and how critical the reduction of the metal size or channel count is 
finally determined to be
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Near-future challenges on the detector and project level

• Large-scale sensor productions
• Uniformity of gain implantation
• ‘Large’ sensors (e.g. 2x4 cm strips)
• Fabrication, yield
• Vendor qualification

• Readout electronics
• Electronics for precision timing are being developed
• Sensor size and input capacitances need to be specified

• Detector system integration
• Assembly into modules: glueing, mechanics
• Profit from previous experiences in strip detectors as well as 

ATLAS/CMS endcap timing layers, but timelines of 
developments overlap
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Thoughts and discussion items

• Comparability of laser and test beam results
• Laser is fast and easy to control; however, does not provide information in areas under 

metal
• Calibration to MIP and stability over time need to be verified
• Close to breakdown and especially for very thin sensors, signal amplitude (gain) is very 

sensitive to increase in bias voltage – voltage needs to be known when comparing data;
sensor-to-sensor variation may play a role as well

• Thickness: better timing resolution of 20 µm sensor, but gain is very sensitive to 
bias voltage: 30 or 35 µm may be an option 

• Was included in previous HPK production; planned for upcoming HPK and BNL 
productions?

• Gain: traditionally determined as Q_LGAD/Q_PIN; first and large-scale LGAD 
productions were DC-coupled pads 
➢ Would it make sense to include some no-gain sensors in AC-LGAD strip and pad 

fabrication runs to assess the actual signal gain? Cross-check with simulations.

• Specification of input capacitance: frequency dependence complicates 
establishing of a certain number for the strip or pad capacitance
➢ Try to confirm measured capacitance by monitoring the noise levels of inherently low-

noise analog preamp chip, e.g. ASROC
➢ Confirm correlation with signal sharing?
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• Thank you!

Thank you!
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HPK strip sensors: sensor thickness

• 50 µm has been a standard active thickness for LGAD sensors

• To lower the contribution of Landau fluctuations in charge deposition and signal 
induction, thinning of the sensor bulk (20 µm ~established, in the future even 
further) is desirable

• Cons: smaller intrinsic signal; lower breakdown voltage = carrier drift velocity does not 
saturate unless gain layer is modified

• In 2 cm sensors, at comparable pmax, the bulk thickness does not have a 
significant impact on the signal sharing

• Signal amplitude profile between main strips differs: quantification of expected 
spatial and timing resolution to be investigated
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Pmax: C vs E type

• Throughout, smaller main hit signal
amplitude in C type compared to E type
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Pmax: 240 vs 600

• Larger signal in 240 – contradictory to some earlier 
results
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Pmax: strip width

• Narrower metal seems to achieve higher signal 
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Pmax: 20 µm sensor strips and pads

• 20 µm: weighting field increases signal in pads (?)
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HPK laser Pmax summary

• All data acquired at UCSC/SCIPP to this point
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