## Low Gain Avalanche Diode

- Utilizing synergies to LGAD detectors at ATLAS (6  $m^2$ ) and CMS (14  $m^2$ ) for HL-LHC.



E field Traditional Silicon detector



Ultra Fast Silicon Detector E field









CMS ETL

# **AC-coupled LGAD**

• AC-LGAD provides not only precise timing resolution, but also ~100% fill factor and much better spatial resolution than DC-LGAD.



Zhenyu Ye @ UIC

# **AC-LGAD** Detectors for ePIC

• Low-Q<sup>2</sup> tagger



# AC-LGAD Detectors for ePIC

#### **Tracking and Vertexing:**

- MAPS
- MPGD

#### PID:

- AC-LGAD TOF (also for tracking)
- hpDIRC
- pfRICH
- dRICH

### **EMCal:**

- PbWO EEMCal
- Pb/SciFi Barrel EMCal with Imaging
- W/SciFi FEMC

#### Hadronic Calorimeter

- Fe/Sc Backward HCAL
- Barrel HCal (sPHENIX re-use)
- Fe/Sc&W/Sc LFHCAL

#### Far-For/Backward

- Roman Pots/B0 Tracker/OMD
- Zero Degree Calorimeter
- Luminosity Tracker/Calorimeter

```
• Low-Q<sup>2</sup> tagger
```





# ePIC AC-LGAD Detector Requirements (Current)



|              | Area (m <sup>2</sup> ) | Channel size (mm <sup>2</sup> ) | # of Channels | <b>Timing Resolution</b> | Spatial resolution              | Material budget     |
|--------------|------------------------|---------------------------------|---------------|--------------------------|---------------------------------|---------------------|
| Barrel TOF   | 10                     | 0.5*10                          | 2.4M          | 35 ps                    | 30 $\mu m$ in $r \cdot \varphi$ | 0.01 X <sub>0</sub> |
| Forward TOF  | 1.4                    | 0.5*0.5                         | 5.6M          | 25 ps                    | 30 $\mu m$ in x and y           | 0.05 X <sub>0</sub> |
| B0 tracker   | 0.07                   | 0.5*0.5                         | 0.28M         | 30 ps                    | 20 $\mu m$ in x and y           | 0.05 X <sub>0</sub> |
| RPs/OMD      | 0.14/0.08              | 0.5*0.5                         | 0.56M/0.32M   | 30 ps                    | 140 $\mu m$ in x and y          | no strict req.      |
| Lumi Tracker |                        |                                 |               |                          |                                 |                     |

Requirements on timing and spatial resolutions and material budget are still being evaluated and are subject to change as the design matures, and we will continue to explore common designs for these detectors where possible to reduce cost and risk.

# **AC-LGAD Sensor**

- Sensors with different configurations produced by BNL-IO and HPK, and tested with 120GeV protons
- Prototype strip sensors with  $\sim$ 35 ps time resolution and <15 um spatial resolution (more in the next talk).
- Prototype pixel sensors with  $\sim 20$  ps time resolution and  $\sim 20^*$  um spatial resolution.

\*  $\sim$ 50 um under metal electrodes. To be improved





#### HPK Strip Sensor (4.5x10 mm<sup>2</sup>) HPK Pixel Sensor (2x2 mm<sup>2</sup>)









#### Zhenyu Ye @ LBNL/UIC

# **Frontend Readout ASIC**

- R&D Goals
  - 15-20 ps jitter with minimal (1-2 mW/ch) power consumption, match AC LGAD sensors for ePIC.
- Plan
  - Utilize the design and experience in ASICs for fast-timing detectors from ATLAS and CMS, and investigate common ASIC design and development for TOF and FF.



#### EICROC by Omega/IJCLab/Irfu/AGH

- Preamp, discri. taken from ATLAS ALTIROC
- I2C slow control taken from CMS HGCROC
- TOA TDC adapted by IRFU Saclay
- ADC adapted to 8bits by AGH Krakow
- Digital readout: FIFO depth8 (200 ns)



#### FCFD by Fermilab (more in the next talk)

- Adapt the Constant Fraction Discriminator (CFD) principle in a pixel paired with a TDC, one time measurement gives the final answer.
- Charge injection consistent with simulations: ~30 ps at 5 fC, and <10 ps at 30 fC
- Tested with laser, beta source and beam

# **AC-LGAD Workfest**

- Jan 9:
  - Requirement and Design
  - AC-LGAD sensor
  - Frontend ASIC
  - Readout electronics
  - Dinner 7pm at Goat & Vine, 195 Remington Blvd, Bolingbrook, IL 60440. Please email me if interested.
- Jan 10
  - Detector Module
  - Mechanical structure and cooling
- Jan 10&11
  - EICROC0 Demonstration (several sessions) organized by Alessandro Tricoli <u>Alessandro.Tricoli@cern.ch</u> Prithwish Tribedy <u>ptribedy@bnl.gov</u>