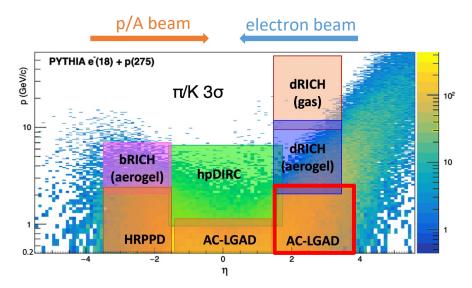
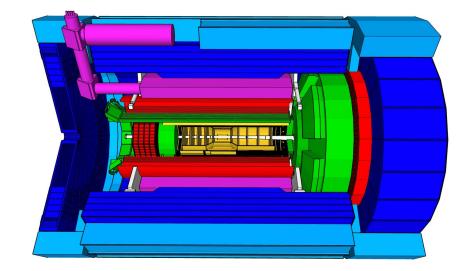
ePIC Forward TOF overview

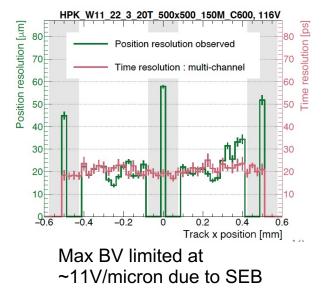

Wei Li (Rice University)


AC-LGADs Workfest@ePIC collaboration meeting January 9-10, 2022

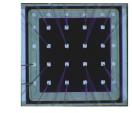
BROOKHAVEN

Jefferson La

AC-LGADs TOF system for PID


Latest envelope (Detector-20231031150001)

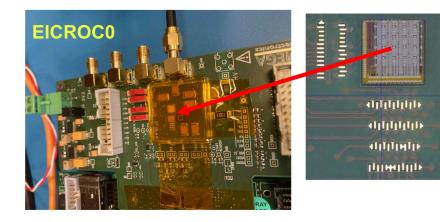
Detector	r (cm)	z (cm)	Rapidity coverage	Momentum range for $3\sigma \pi/K$ separation
Barrel TOF	56 <r<63< td=""><td>-117.5<z<171.5< td=""><td>-1.42<η<1.77</td><td>$0.2 < p_T < \sim 1.2 \text{ GeV}$</td></z<171.5<></td></r<63<>	-117.5 <z<171.5< td=""><td>-1.42<η<1.77</td><td>$0.2 < p_T < \sim 1.2 \text{ GeV}$</td></z<171.5<>	-1.42<η<1.77	$0.2 < p_T < \sim 1.2 \text{ GeV}$
Forward TOF	8 <r<60< td=""><td>180<z<195< td=""><td>1.86<η<3.85</td><td>0.2 < p < ~2.3 GeV</td></z<195<></td></r<60<>	180 <z<195< td=""><td>1.86<η<3.85</td><td>0.2 < p < ~2.3 GeV</td></z<195<>	1.86<η<3.85	0.2 < p < ~2.3 GeV


FTOF requirements and R&D progress

Current requirements (presented at FY23 EIC Project R&D - DAC Meeting)

	Area (m ²)	Channel size (mm ²)	# of Channels	Timing Resolution	Spatial resolution	Material budget
Barrel TOF	10	0.5*10	2.4M	30 → 35 ps	30 μm in $r \cdot \varphi$	0.01 X ₀
Forward TOF	1.4	0.5*0.5	5.6M	25 ps	30 μm in x and y	$0.08 \rightarrow 0.025 X_0$
B0 tracker	0.07	0.5*0.5	0.28M	30 ps	20 μm in x and y	$0.01 \rightarrow 0.05 X_0$
RPs/OMD	0.14/0.08	0.5*0.5	0.56M/0.32M	30 ps	140 μm in x and y	no strict req.

HPK Pixel Sensor (2x2 mm²)


Promising to achieve the requirements with 20micron thick, 0.5x0.5mm² pixel sensors

Next step: producing large sensors – 32x32, 64x32

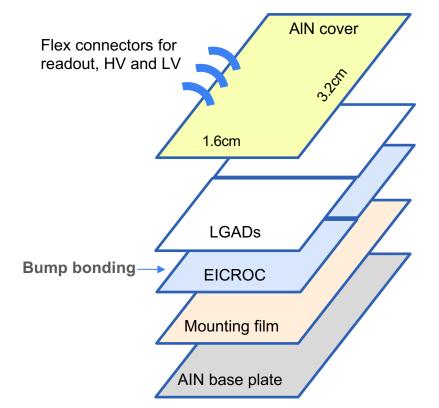
FTOF ASICs - EICROC

ASIC requirements:

- Pixel size: 0.5x0.5 mm²
- Low jitter: <20ps
- Low power consumption: 1mV/channel

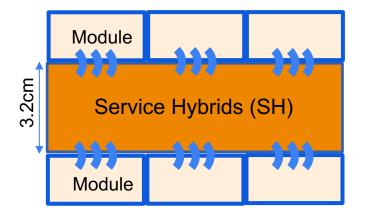
EICROC0 (4x4): first version ↓ EICROC1 (8x32?): intermediate size ↓ EICROC2 (32x32): full size ↓ EICROC3 (32x32): final (if needed)

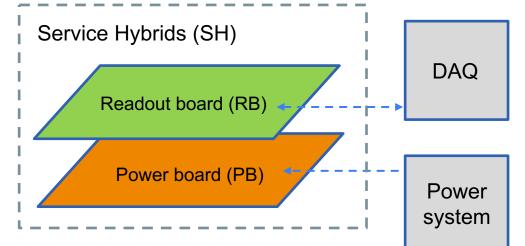
FTOF modules


Each FTOF module consists of

- Two 32x32 or one 64x32 sensors
- Two 32x32 ASIC chips (EICROC)

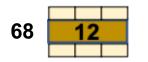
5.2011				
LGADs+ EICROC	LGADs+ EICROC	1.6cm		

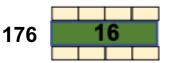

2 2000

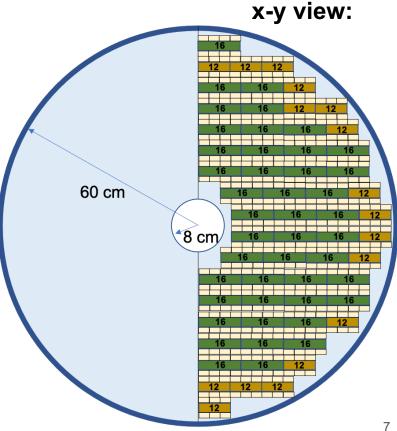

Expanded view of module illustration

FTOF service hybrids

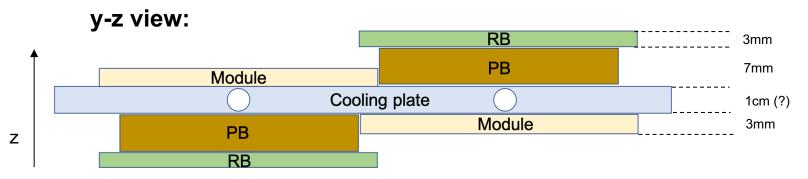
- A readout board (data transmission) and a power board (LV/HV)
- Two types of SHs, serving 6 (12) or 8 (16) modules (EICROCs)
 - Not too many limited by pin connectivity, data rate to FPGA
 - Not too few so that the board is not too short (>~10cm)
 - Each SH serves even # of modules




More details of design and prototyping in Wei's talk


FTOF detector layout (v1)

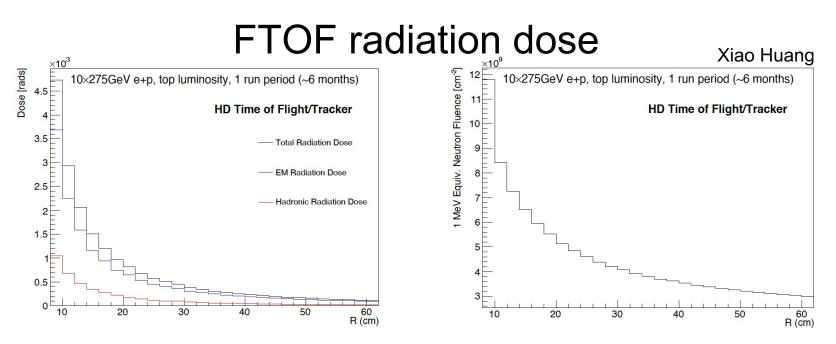
FTOF disk will consist of two "DEE"s, made of carbon fibers and cooling pipes.


Each DEE is tiled by modules and SHs on both faces to maximize the coverage

FTOF detector layout (v1)

(illustration only, thickness not exactly to scale)

Material composition:

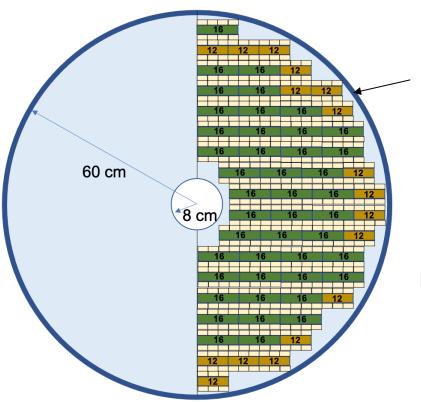

- RB: 1-2 mm Kapton + FPGAs
- PB: 1-2 mm Kapton + coils + bPol12
- Cooling: a few mm to 1cm? (Andy/Yi)
- Module: 1mm Si + 1mm AIN

Channel counts and power budget

	Counts		Pow
Modules	1816	Sensors	0.3k
Sensors/ASICs	3632	EPTROC	3.6k\
Data fiber pairs	244	DC-DC	2.5k\
LV cable pairs	244	FPGAs	1kW
HV cable pairs	244	Total	7.4kV

Assuming a single value of HV for each SH

Channels and power budget reduced from v0 mainly because of reduced envelope


Equivalent numbers for CMS ETL at HL-LHC is up to ~10⁶x higher

- R-dependent HV map is necessary to maintain unform gains toward the end of lifetime
- Each SH is designed to provide up to 4 different HVs (thus 4 HV cables)

Necessity of multiple HV values per SH at ePIC to be determined by irradiation tests

• If needed, in which region? Possibly only needed for a small inner region, which can be implemented for a small set of SHs.

FTOF mechanics, cooling and power system

Cooling manifolds and LV/HV patch panels mounted on the rim of the DEEs to take advantage of space in the z direction and minimize impact to the active detector area

Light-weight structure made of Carbon-Fiber foam with embedded cooling tube being developed under eRD112 and PED. See more details in Andy's talk

Organization and work packages for FTOF

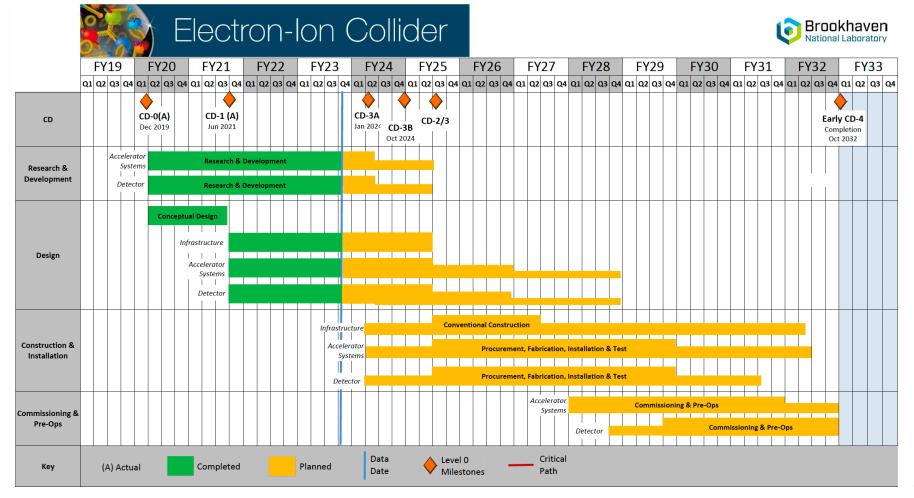
Organize the work in terms of work packages, each led by a coordinator. Will work together with coordinators on refining the schedule and cost estimate.

Work Package	Coordinator(s)	Institutions (currently identified)
Sensor		ORNL, SCNU
Sensor-ASIC integration		ORNL, (SCNU)
Frontend ASIC		(IJCLab/Omega), BNL, ORNL
Service Hybrid and Module PCB		Rice, BNL
Module Mechanical Structure		Purdue, NCKU
Module Assembly		LANL, ORNL, (RIKEN)

See https://indico.bnl.gov/event/20826/ for the first discussion

We highly welcome more institutes/colleagues to join the efforts and take leading roles!

Backups


Power budget (v0)

0.5x0.5 mm² option

0.5x0.5	Forward	Backward
Sensors	0.6kW	0.35kW
EPTROC	8.5kW	4.8kW
DC-DC	3.5kW	2kW
lpGBT, VTRx+, SCA	0.5kW	0.3kW
Power cables	0.5kW	0.3kW
Total	13.6kW	7.75kW

0.8x0.8 mm² option

0.8x0.8	Forward	Backward
Sensors	0.2kW	0.13kW
EPTROC	3.2kW (6.4kW)	1.8kW (3.6kW)
DC-DC	1.3kW	0.75kW
lpGBT, VTRx+, SCA	0.2kW	0.12kW
Power cables	0.2kW	0.12kW
Total	6.1kW	2.9kW

