AC-LGAD Trackers for the Luminosity Pair Spectrometer

Why Does the Pair Spectrometer Need Trackers?

Precise determination of photon acceptance:

- precisely reconstruct photon position: $X_y \& Y_y$ Needed to extrapolate yield if photon beam is clipped.
- helps define CAL fiducial area (CAL edges are fuzzy).

Photon beam is macroscopic at converter (Z=-58 m).

Redundancy:

Pileup mitigation:

- CALs or trackers alone can determine the lumi. Better to have both.
- Online calibration tool for CALs.
- CALs are more robust: ~100% efficient
- Trackers are more precise in terms of photon energy and position resolution.

Clipped

Why AC-LGAD?

Shared technology within ePIC:

- The PS would need at least 4 layers, each being 20 cm x 20 cm.
- We can "piggy-back" on the R&D work from TOF or the FF B0...

Pixel size:

- Need small pixels: 500 um / 5 / $\sqrt{12}$ = **30 um** is sufficient to achieve stated goals.

Timing information:

- AC-LGAD time resolution ~ 20 psec easily allows to distinguish bunch crossings.
- Electron bunch is ~1 cm long \rightarrow photon bunch is ~1 cm long \rightarrow **30 psec**.
- Time separation between multiple photon conversions in same bunch crossing (pileup)
 - ~ AC-LGAD time resolution. Timing info only provides a little extra help to mitigate pileup.

Material budget:

- Simulations suggest that the tracking distortion from $\sim 1\%$ X0 is not a problem.

Requirements

Photon position resolution, $X_Y \& Y_Y$:

- Studies of how much the photon beam could be clipped, suggests $\delta X_{\gamma} \& \delta Y_{\gamma} < 6$ mm.

Photon energy resolution:

- Should be better than the PS CAL (~10% / \sqrt{E}). Trackers will calibrate PS CALs online.

Fake track rejection:

- 2-layer hodoscope saves on costs but requires cuts to isolate real tracks. DCA < 2 cm and M_{inv} < 0.1 GeV found to be effective.
- AC-LGAD noise rate ~30 Hz per pixel (30 msec). Bunch spacing is 10 nsec. So, a ~10⁻⁷ probability for a given pixel to fire as noise. Each sheet has 10^5 pixels $\rightarrow ~1\%$ chance to have noise-induced track. Noise hits occur at random locations \rightarrow dca to converter will be large (easy to reject).

Tracker Occupancies

Tracker Performance: photon X_{γ} and Y_{γ} resolutions

- Photon X and Y resolutions ~ 2 mm.
- Satisfies requirements

Tracker Performance: photon energy resolutions

e-eGen {fabs(eGen-18)<0.1 && dca<20 && mass<.1}

Energy resolutions $\sim 1\%$. Better at low E (larger slope in trackers). Opposite wrt CALs. ٠

Easily satisfies requirements. ۰

Remarks

- AC-LGADs are a suitable technology for the Pair Spectrometer tracker.
- A 2-layer ("bare-bones") hodoscope should suffice, although with cuts in place.
- Reconstructed photon energy and position resolutions satisfy our requirements.

To Do

- Calculate tracking efficiency (with cuts) & fake-track rates.
- Check performance of trackers in multi-conversion events (pileup):
 - With 1 mm Al converter foil, expect ~0.2 electrons per bunch crossing on average in eA. Not certain that a 1 mm foil can withstand synchrotron heat load.
 - Thicker converters \rightarrow more conversions.

PS Rates

12

Toy MC simulation

Source photon X_{Y} distribution taken as a Gaussian with $\sigma = \delta\theta * Z = (211e-6 \text{ rad}) * (58 \text{ m}) = 12 \text{ mm}$

- 1) Randomly sample X_{γ} from the source
- 2) Clip one side by $N\sigma$
- 3) Smear X_{γ} by resolution
- 4) Fill a histogram with smeared X_{γ}
- 5) Fit the histogram with Gaussian and compare it's yield to that of the source

This is done for truncated N σ between 0 and 5 from center of Gaussian, and for X_{γ} resolutions from 0 to 20 mm.

Fitting the clipped & smeared distribution causes non-Gaussian features. Best fits obtained by fitting from -5 σ to $\frac{3}{4}$ N $\sigma_{clipped}$

1σ truncation, perfect position resolution

1σ truncation, 2 mm position resolution

1σ truncation, 10 mm position resolution

3σ truncation, 10 mm position resolution

Putting it all together

• To achieve < 1% error, we need a X_{γ} resolution of < 6 mm.