

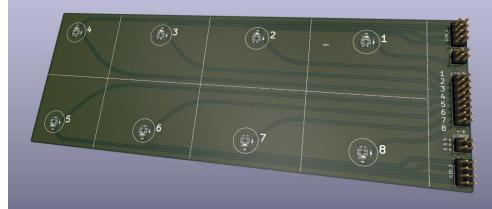
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Barrel TOF Flex PCB

- Connect 64 ASICs (+X) along stave to RDO at end of stave
 - Low voltage, bias (HV), ground
 - Differential e-links, **clocks**, slowcontrol/I²C?
 - Individual ASIC output data rate is only ~Mbit/s (based on Tonko's initial estimates)
- Low mass: 1% X/X₀ total barrel material budget
- Needs to fit barrel TOF geometry
 - ~1.3m length
- Kapton flex PCB:
 - Custom geometry "sandwich" of thin kapton and conductor layers
 - Used in other tracking detectors already

PID-TOF	3M-50M	240-500	6Gb/sec	12	EICROC / AC-LGAD	Channel / Fiber counts depend on sensor geometry. Considering pitches of: .5mm x 1cm, .5mm x .3cm, .5mm x .5mm

Update


- Found capable engineering support at University of Debrecen
 - Payment figured out
 - Looking into connectors etc, but also working on LFHCAL prototype electronics...
- In the meantime: produced flex PCBs with different vendors by ourselves
 - Evaluated LV, HV characteristics (very simple...)
- Alice Bean (Kansas U.) was on sabbatical in ORNL RNP group
 - Experience with long flex lines for ATLAS pixel upgrades
 - Got a some prototypes and direct contact to their

LFHCAL Flex PCB

- ePIC LFHCAL uses Kapton flex to gather SiPM signals per layer
 - Different geometry then TOF flex, but same technology and similar conductor layout
- Designed two revisions ourselves
 - Worked well in testbeams
- Different vendor than previous prototypes
 - Fast production, good quality, more detailed layup options etc.
- Learned a lot about vendors, process and capabilities

Towards a Flex Prototype for the TDR

- TDR should be 70-90% design maturity.
 - We won't have a 70-90% mature ASIC.
 - The ASIC (largely) defines the actual requirements of the flex: number of conductors, e-link speed, power requirements...
- All we can really do is demonstrate we master the technology to 70-90% design maturity
 - Reading out a similar ASIC over a "long" flex with a prototype TOF RDO would be reasonable
- Tonko plans to design an TOF RDO prototype with custom connectivity: Can add whatever we need to demonstrate flex prototype

Towards a Flex Prototype for the TDR – Open Questions

Which ASIC?

- EICROC0 seems premature, EICROC0a likely available in time, EICROC1 definitely unavailable
- Current FCFD is analog only
- How about ETROC? Mature, digital I/O, "real chip", have expertise within ePIC TOF
- With or without sensor?
 - Needs some clarity on interconnects, but ORNL has some eRD109 funding on that...

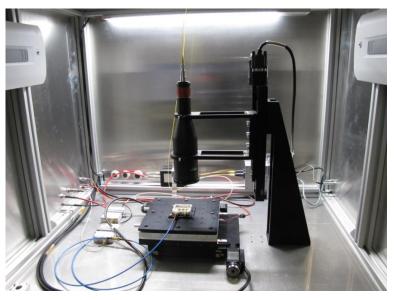
• Connectors:

- E-links and LV, GNDs no real problem, especially for prototype.
- HV connectors not so easy... no single COTS connector will do HV and LV in one enclosure

Backup

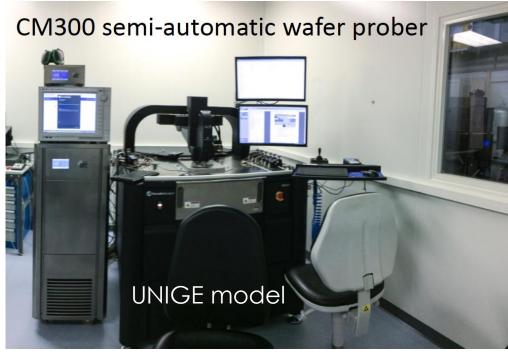
SET FC150 precision bonder

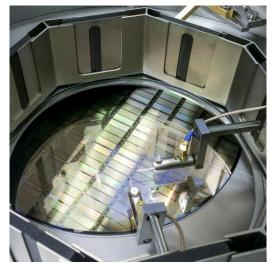
ORNL will purchase a FC150 flip-chip bonder in FY'24 from lab funds

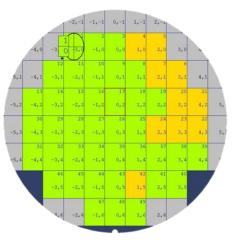

- Up to 150mm substrate and chip handling
- +- 1µm post-bonding accuracy
- +- 1µRad parallelism with active levelling
- Pressure up to 200 kg
- Temperature up to 400C (~1C/s)
- Can be operated in fully automated mode
- Liquid dispenser integrated in the machine for glue, underfill distribution

Other ORNL News

- TCT Setup finally arrived...
 - 1064nm, 550nm lasers
- New wire bonder available (*)






FormFactor CM300xi probe station

We acquired a 300mm semi-automatic prober that is now installed at ORNL:

- Accommodate 5-300mm sample size
- Light tight and airtight thermal chamber
 - -60C to 125C testing range
- Probes:
 - 8 x DC probe for parametric measurement
 - 2 x RF probes
 - 1 x XYZ robotic probe with optical probing
 - Probe card holder for open, closed top probe cards
- 4 x Cameras :
 - Top view up to 1000x
 - Bottom-up view (probe alignment)
 - Side view (wafer surface alignment)
 - Auxiliary view (closed top probe card alignment)
- Fully automated alignment of wafers and dices
- Fully programmable for unattended testing

Budget Request FY'24

Inst.	Resource	FTE (%)	Budget (k\$)
	Barrel Low-Mass Service Hybrid R&D		
ORNL	Electrical Engineering + Technician	10	10
ORNL	Staff Scientist	10	0 (in-kind)
ORNL	Materials and Supplies	_	10
ORNL	Production and Bonding	-	10
ORNL	Low cost interconnect	_	15
Total			45

Table 15: eRD109 Budget request for the continuation of the ORNL flexible Kapton PCB R&D in FY24, starting from December 1st 2023. All entries in thousands of dollars.

Budget Request FY'23

Inst.	Personnel		Budget (k\$)
	Readout and Timing Distribution R&D		
BNL	Electrical Engineer		38
BNL	Staff Scientist	2x0.2 FTE	0 (in-kind)
BNL	Xilinx Dev. Kit		4
BNL	Timing Chips $+$ Boards		15
BNL	Travel Support		5
	Barrel Service Hybrid R&D		
ORNL	Electrical Engineer		32
ORNL	Staff Scientist	$0.1~\mathrm{FTE}$	0 (in-kind)
ORNL	Materials and Supplies		8
ORNL	Xilinx Dev. Kit		4
	Endcap Service Hybrid R&D		
Rice	Electrical Engineer	$0.15 \; \mathrm{FTE}$	18
Rice	Faculty	$0.1~\mathrm{FTE}$	0 (in-kind)
Total			116

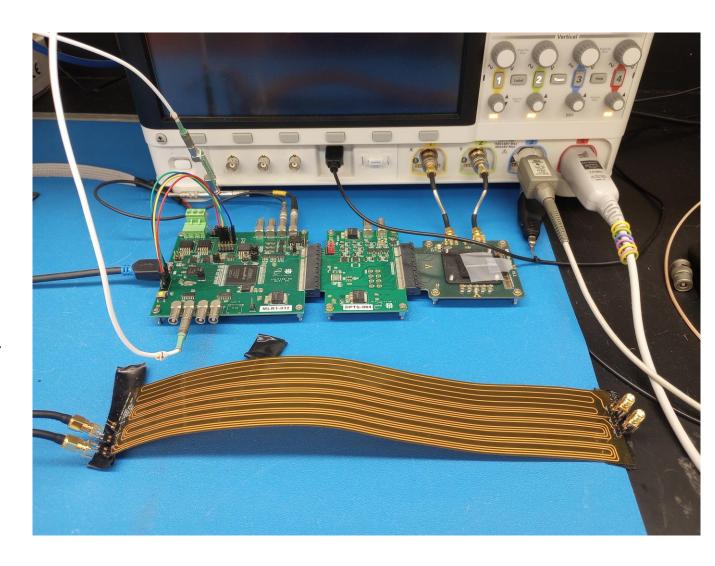
Table 22: Budget request for the TOF system readout electronics R&D in FY23. All entries in thousands of dollars.

Test Structure and Measurements

- Design test prototype: As long as possible
 - Differential link loops at various lengths, geometries (?)
 - LV/HV conductors
- RF testing:
 - Confirm simulations: bandwidths, insertion losses, crosstalk
 - Test link speed/BER with FPGA/established line driver, edge jitter
 - Eventually integration into timing distribution test bench at ORNL
- DC testing:
 - Acceptable voltages, currents, resistances
- Mechanical:
 - Thermal cycling
 - Handling, bending, folding

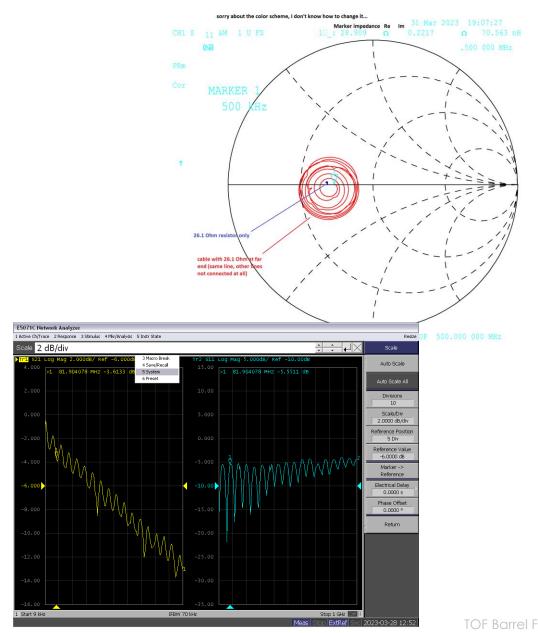
Simulation and Design

- LV/HV
 - Required material budget for current requirements
 - How much DC-DC converters for given ASIC?
 - Serial powering?
 - Design requirements for HV conductors
- Differential links:
 - Insertion losses, analog bandwidth for different lengths
 - Crosstalk on clock line(s)!
 - Ultimately informs output drive strength
- Common flex foil, or separate for LV/HV/RF?
- Supported by ORNL electrical engineering


Technological Survey

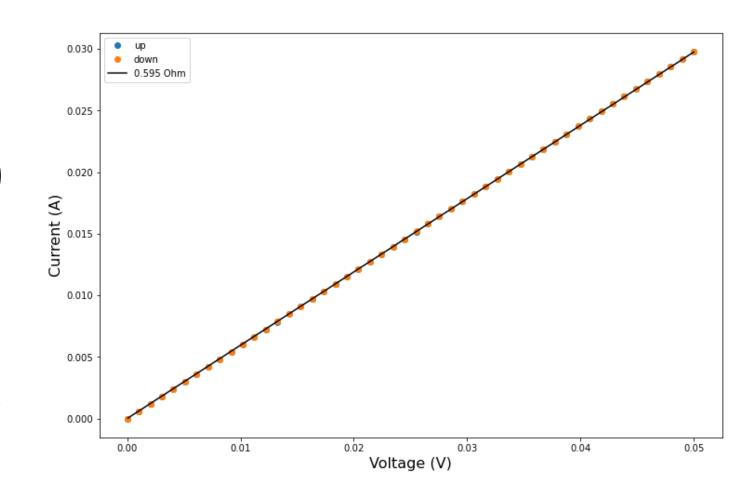
- Kapton-Cu flex foils are available from various vendors
 - Cheap (~\$100/3pcs), quick (3-4 weeks)
 - Can produce many prototypes for a more experimental approach
- Low mass Kapton-Al is more specialized and expensive
 - Not worth it for prototypes at this point
- Max size: 1m?
 - Depends on vendor, but can fit very long traces on moderately sized foils in any case...

The "Experimentalist Approach"


- Still identifying the right ORNL engineering resources...
- Producing cheap Cu-flex prototypes instead
 - 2x 1.5m differential pairs on 40cm flex
- Using DPTS (ITS3 test structure)
 CML driver as test bench driver
 - 65nm CMOS line driver
- First attempt does not yield useful data on the scope
 - Not sure if due to transmission line or connectors

Vector Network Analyzer Measurements

- Measurements by G. Visser (Indiana) and ORNL
- Our first attempt at transmission line is not 500hm...
 - "Easy" fix for next attempt...


Available Equipment

- 4ch Vector Network Analyzer available
 - Insertion loss
 - Inter-line crosstalk
 - Need proper 50R transmission line to make sense of measurements
- Time domain reflectometer still looking
 - Characterize impedance mismatches along length of transmission line

DC Resistance Measurements

- 0.5950hm along strip
 - 1.49 m length, 1mm pitch, 35um thickness
 - 2.35E-8 Ohm*m(c.f. 1.8E-8 Ohm*m for Cu)
- Inter-strip resistance
 - Could not get reliable measurement so far (capacitive effects dominate)
 - Tested up to 500V without notable leakage

