Assessing Angular Resolutions

Matt Posik
Temple University

Angular Resolution: Method 1

*Simulation running details found in backup

- Use projected position point vectors of projected track point (H1) and nearest Reference surface hit (H2) to obtain angles:
- Projected Point (x, y, z) hits $\rightarrow \theta_{H 1}, \phi_{H 1}$
- Reference Point (x, y, z) hits $\rightarrow \theta_{H 2}, \phi_{H 2}$
- Angular differences are:
- $\theta_{H 1}-\theta_{H 2}$
- $\phi_{H 1}-\phi_{H 2}$
- Angular resolution $\sigma_{\theta}, \sigma_{\phi}$ are extracted from width of assumed Gaussian distribution

Projected Track Segment

Angular Resolution: Method 1

- Use projected position point vectors of projected track point (H1) and nearest Reference surface hit (H2) to obtain angles:
- Projected Point (x, y, z) hits $\rightarrow \theta_{H 1}, \phi_{H 1}$
- Reference Point (x, y, z) hits $\rightarrow \theta_{H 2}, \phi_{H 2}$
- Angular differences are:
- $\theta_{H 1}-\theta_{H 2}$
- $\phi_{H 1}-\phi_{H 2}$
- Angular resolution $\sigma_{\theta}, \sigma_{\phi}$ are extracted from width of assumed Gaussian distribution
$>$ Reference surface nearly massless

Surface Comparisons

Simulation Hit Surface
Propagation Surface

Method 1: Extracting Angular Resolution

ePI

Example

$$
2.00 \mathrm{GeV} \leq p \leq 3.00 \mathrm{GeV}
$$

Angular Resolution Method 2

epres
Track Errors

- Use propagated trajectory and track point vector to get track direction impacting PID surface

- $\vec{x}_{H 1}=\left(l_{0}, l_{1}, \theta, \phi, \frac{q}{p}\right)$
- Obtain track direction uncertainty from covariance matrix, C

$$
C=\left[\begin{array}{ccccc}
\sigma^{2}\left(l_{0}\right) & \operatorname{cov}\left(l_{0}, l_{1}\right) & \operatorname{cov}\left(l_{0}, \phi\right) & \operatorname{cov}\left(l_{0}, \theta\right) & \operatorname{cov}\left(l_{0}, q / p\right) \\
\cdot & \sigma^{2}\left(l_{1}\right) & \operatorname{cov}\left(l_{1}, \phi\right) & \operatorname{cov}\left(l_{1}, \theta\right) & \operatorname{cov}\left(l_{1}, q / p\right) \\
\cdot & \cdot & \left(\sigma^{2}(\phi)\right) & \operatorname{cov}(\phi, \theta) & \operatorname{cov}(\phi, q / p) \\
\cdot & \cdot & \cdot & \left(\sigma^{2}(\theta),\right. & \operatorname{cov}(\theta, q / p) \\
\cdot & \cdot & \cdot & \cdot & \sigma^{2}(q / p)
\end{array}\right]
$$

[^0]

[^1]Reconstructed Track

Method 2: Extracting Angular Resolution

- Histogram sqrt(variance), variance obtained from covariance matrix
- Histogram mean = angular resolution

Example

- Histogram RMS = error bar

$$
2.00 \mathrm{GeV} \leq p \leq 3.00 \mathrm{GeV}
$$

ϕ error, $0.000000<\eta_{\text {true }}<0.250000,2.000000 \mathrm{GeV}<\mathrm{p}_{\text {tve }}<3.000000 \mathrm{GeV}$

Comparisons: Pions $(0.00<\eta<0.25)$
\square Revised Method 1 shows improvement in angular resolution, in particular at low momenta

- For details on revised method 1 see: PID WGM 11/17/2023

Comparisons: Pions (1.00< <1.25)

Revised Method 1 shows improvement in angular resolution, in particular at low momenta

Methods 1 and 2 can be used to assess angular resolutions for any detector
$>$ Difference seen between the two methods:
\square Method 1 takes difference between propagated trajectory track point and the true hit (via Reference surface Sim hit) to extract angular resolution
Method 2 assigns uncertainty at each surface from Kalman Filter

- Gives uncertainty related to KF (filtering uncertainty)
- Doesn't know where true hit location is
\square Use fast simulation to try and understand the difference better
\square Software Version
- ePIC = 23.07.2
- Detector Configuration = Craterlake
- EICRecon = v1.5.1
\square Generator
- Particle Gun = pion
- ϕ (uniform) $=\left(0^{\circ}, 360^{\circ}\right)$
- $\theta($ uniform $)=\left(20^{\circ}, 160^{\circ}\right) /$

$$
(|\eta| \leq 1.73)
$$

- p (uniform) $=(0.3 \mathrm{GeV}, 10.0 \mathrm{GeV})$

Simulation Distributions: Representative Sample

epI

[^0]: From ACTS

[^1]: Projected Track Segment

