

1

Track Propagation and Pathlength

Shujie Li

Tracking/PID Workfest Session ePIC January Collaboration Meeting @ANL Jan 11, 2024

ACTS Track Parameter

Track parameter:

$$ec{x} = (l_0, l_1, \phi, heta, q/p, t)^T$$

Covariance Matrix:

$$C = egin{bmatrix} \sigma^2(l_0) & \operatorname{cov}(l_0,l_1) & \operatorname{cov}(l_0,\phi) & \operatorname{cov}(l_0,\theta) & \operatorname{cov}(l_0,q/p) \ & & \sigma^2(l_1) & \operatorname{cov}(l_1,\phi) & \operatorname{cov}(l_1,\theta) & \operatorname{cov}(l_1,q/p) \ & & & \sigma^2(\phi) & \operatorname{cov}(\phi,\theta) & \operatorname{cov}(\phi,q/p) \ & & & & \sigma^2(\theta) & \operatorname{cov}(\phi,q/p) \ & & & & & & \sigma^2(q) & \operatorname{cov}(\theta,q/p) \ & & & & & & & & \sigma^2(q/p) \end{bmatrix}$$

Track Propagator

Stepper:

- update the track parameter according to the equation of motion through numerical integration
- Default: 4th order Runge-Kutta with adaptive step size. Magnetic field and material effects included
- Pathlength = accumulated step size

Navigator:

Sort out the order of volumes, layers, and surfaces, keeps track of the current position in the geometry and adjusts the step size to reach the target surface

Propagating Through Material

Initial to final step: evolve covariance in time

$$C^f = J \cdot C^i \cdot J^T,$$

$$J = egin{bmatrix} rac{\partial l_0^f}{\partial l_0^i} & \cdots & rac{\partial l_0^f}{\partial (q/p)^i} \ dots & \ddots & dots \ rac{\partial (q/p)^f}{\partial l_0^i} & \cdots & rac{\partial (q/p)^f}{\partial (q/p)^i} \end{bmatrix},$$

Material effects:

- Deflection and offset → averaged to 0, increased uncertainties
- Energy loss → reduced trajectory energy
- Hadronic process \rightarrow disintegration etc.

Propagating Through Material

Propagating Through Material

Track Propagation in ElCrecon

Code: EICrecon/src/algorithms/tracking/TrackPropagation.cc

Example: CalorimeterTrackProjections

edm4eic data structure

##	Αp	point along a track	<							
edm4eic::TrackPoint:										
Members:										
	_	uint64_t	surface							
	-	uint32_t	system							
	-	edm4hep::Vector3f	position							
	_	edm4eic::Cov3f	positionError							
	_	<pre>edm4hep::Vector3f</pre>	momentum							
	_	edm4eic::Cov3f	momentumError							
	_	float	time							
	_	float	timeError							
	_	float	theta							
	-	float	phi							
	-	edm4eic::Cov2f	directionError							
	_	float	pathlength							
	-	float	pathlengthError							

Entry in ElCrecon output

entry	subentry	surface	system	position.x	position.	y position.z	
0	0	1	101	434.296143	683.73010)3 –3126.125732	
positionError.xx		positionError.yy		positionError.zz pos		ositionError.xy	
0.0		0.0		0.0		0.0	
positionError.xz		positionError.yz		momentum.;	x momentu	ım.y momentum.z	
0.0		0.0		2.344102	2 3.632	2064 -16.861221	
momentumError.xx		momentumError.yy		momentumError.zz mo		omentumError.xy	
7.289197e-09		1.419472e-07		1.927672e-07		1.127397e-10	
moment	umError.xz	momentumError.yz		tin	me tim	neError theta	
-6.	448492e-10	6.667218e-08		3241.9243	16 2.9979	25e+12 2.890622	
phi directionError.xx directionError.yy directionError.xy \ 0.997668 7.289197e-09 1.419472e-07 1.127397e-10							
pathl 3261.2	ength pat 29004	hlengthErr 0	or 0.0				

Define Track Projection Surface

- For existing surfaces or boundary:
 - Find corresponding geometry ID
- For detector volumes:
 - Manually define a list of passive surfaces in DD4hep for projection. See instruction at

https://github.com/acts-project/acts/issues/2403

Volumes and Layers in Tracking Envelope

Material Projection Matters

NO material info is currently provided for track propagation etc \rightarrow track projection is

For creating a proper material map, see https://indico.bnl.gov/event/20842/

Track Projection Steps:

- 1. Prepare the DD4hep geometry description.
- 2. Locate the projection surface. For layer detectors, make sure the chosen surface are recognized by ACTS. For volume detectors, create virtual passive surfaces.
- 3. For accurate propagation, prepare the material map for the entire detector envelop up to your target surface
- 4. In ElCrecon, take the trajectory from track recon and feed into TrackPropagation to obtain a TrackPoint object at your target surface