

Particle Flow Status Derek Anderson (ISU) ePIC Collaboration Meeting January 11th, 2024

Particle Flow Status | To-Do ca. July 2023 vs. Now

Particle Flow Discussion To-Do		еріс
 Missing Infrastructure (Major): PF Framework Factories Algorithm + configuration files Improved track-cluster associator Extend to include Hcals However, truth-based implementation may work for interim 	 Missing Infrastructure (Minor): PEObject Visualizer: Plugin (or service?) to visualize clusters, tracks, etc. Crucial for debugging Downstream analysis: Code to look at impact of changes Existing jet benchmarks are good starting place 	 Open Questions: Does implemented cluster splitting work in non-enabled* detectors? How well do existing MC-cluster associations work? Currently handled by MatchClusters algorithm Would a separate MC-cluster associator be better?
Major = necessary for implementationMinor = can be pursued in parallel with implementationYellow = connection with other groups* = existing implementation enabled for central ECals and ECalLumiSpec (not enabled for Imaging/SciFi)		
July 13 th , 2023	Derek Anderson, <u>ePIC</u> Jet/HF WG	10/10

- <u>Slide from special Jet/HF</u>
 <u>meeting on PF</u>
 - Was on July 13th, 2023
- Colors indicate current status:
 ☑ Green = done
 - Yellow = in progress (& nearing completion)
 - Red = not started (but target for this workfest)
- Huge thanks to Tyler for implementing track-cluster matcher!

Particle Flow Status | PR and Github Links

o PR #1186 now in draft

- Initial stab at implementing PFAlpha (see next slide)
- Feel free to clone and test out!
- Accomplishes:
 - Creates infrastructure for PF (algorithm + corresponding factory)
 - "Improves" on existing MatchClusters algorithm by
 - > Folding in HCal's in addition to ECal's
 - Using realistic track-cluster matching in contrast to using truth information

 \square = done \square = in progress \square = not started

- Work ongoing responding to feedback on PR1186
 - Link to development branch
 - Currently won't run (accidentally pushed bug to branch)
- Improvements being made:
 - Simplification of factory and conversion to JOmniFactory
 - \square Inclusion of energy thresholds
 - \square Simplification of user interface
 - \square Consolidation of tools into a namespace
 - Making code more expressive
 - Modularization to make code more maintainable
 - Suarding against wrong input types

PFAlpha | Overview

- Particle Flow Alpha (PFAlpha): a simplistic "bare bones" PFA
 - Will function as baseline to compare against more sophisticated PFAs
 - And more importantly: kickstarts general PF development
 - $\ensuremath{^{\frown}}$ Both infrastructurally and conceptually
- The gist:
 - 1) Project tracks through calos
 - Associate all calo clusters in cone of size R around track
 - 3) Sum all calo energy in cone and subtract expected track energy from sum
 - 4) Merge leftover clusters in cones of size R
 - 5) Return PFObjects
 - Tracks
 - Subtracted, merged clusters

Parameters

- R_{sum}^{ECal} : radius in (η, φ) in which to combine ECal clusters
- R_{sum}^{HCal} : same but for HCal
- f_{sub}^{ECal} : fraction of track energy to subtract from ECal clusters
- f_{sub}^{ECal} : same but for HCal

Oversight: minimum momentum of tracks or energy of clusters thresholds

- Not in PR yet!
- Will be added in while responding to feedback

PFAlpha | Detailed Breakdown of Algorithm

1) Subtract projected E_{trk} from ECal, HCal clusters

- a) Identify seed (highest p_{trk}) track projection at inner face of ECal
- b) Sum E_{trk} of all projections in R_{sum}^{ECal} , R_{sum}^{HCal} of seed
- c) Sum E_{clust} of all ECal, HCal clusters in R_{sum}^{ECal} , R_{sum}^{HCal} respectively
- d) If $\Sigma E_{trk}^{ECal,HCal} < \Sigma E_{clust}^{ECal,HCal}$
 - i. Subtract $f_{trk}^{ECal,HCal} \times E_{trk}^{ECal,HCal}$ of nearest projection from each cluster
 - ii. Pass subtracted clusters onto step 2
- e) Repeat 1(a) 1(d)(ii) until all projections have been used

- 2) Combine remaining ECal, HCal clusters into topoclusters
 - a) Combine nearby ECal, HCal clusters
 - i. Identify seed (highest E_{clust}) ECal cluster
 - ii. Merge all ECal, HCal clusters in R_{sum}^{ECal} , R_{sum}^{HCal} of seed
 - iii. Repeat 2(a)(i) 2(a)(iii) until no ECal clusters are left
 - **b)** Combine remaining HCal clusters
 - i. Identify seed HCal cluster
 - ii. Add all HCal clusters in R_{sum}^{HCal} of seed
 - iii. Repeat 2(b)(i) 2(b)(iii) until no HCal clusters left
- **3)** Return PFObjects

PFAlpha | ElCrecon Implementation

/! Primary Algorithm Call

- * tracks or combinations of calorimeter clusters.

std::unique_ptr<edm4eic::ReconstructedParticleCollection> ParticleFlow::process(
 TrkInput inTrks,
 VecCaloInput vecInCalos,

VecCaloIDs

// set in

// Set Inputs m_inTrks = inTrks; m_vecInCalos = vecInCalos; m_vecCaloIDs = vecCaloIDs; m_log -> trace("Running particle flow algorithm");

// instantiate collection to hold produced reco particles
m_outPFO = std::make_unique<edm4eic::ReconstructedParticleCollection>();

```
// initialize track map
initialize_track_map(m_inTrks.first, m_trkMap);
```

// loop over pairs of input calos for (size_t iCaloPair = 0; iCaloPair < m_const.nCaloPairs; iCaloPair++) {

- // run selected algorithm
 // if unknown option is selected, throw exception
 switch (m_cfg.flowAlgo[iCaloPair]) {
- case FlowAlgo::Alpha:

m_log -> trace("Running PF Alpha algorithm for calorimeter pair #{}", iCaloPair); do_pf_alpha(iCaloPair, m_vecInCalos[iCaloPair], m_vecCaloIDs[iCaloPair]); break;

default:

m_log -> error("Unknown PF algorithm option ({}) selected!", m_cfg.flowAlgo[iCaloPair]); throw JException("invalid argument"); break;

```
// end calo pair loop
```

// save unused tracks and return output collection
save_unused_tracks_to_output(m_trkMap);
m log -> trace("Finished running particle flow algorithm");

// return output collection
return std::move(m_outPFO);

// end 'process(ParticleFlow::TrkInput, ParticleFlow::VecCaloInput, ParticleFlow::VecCaloIDs)'

- Current ElCrecon implementation:
 - Input:
 - > Reco. tracks
 - > Track projections
 - Calo. clusters from all 6 calorimeters on central detector
 - Organizes cluster collections into 3 ECal-HCal pairs based on pseudorapidity
- Then choice of PFA to process each pair of calorimeters is a user-configurable parameter
 - **Left:** primary algorithm call for PF factory
 - Rationale:
 - This allows each region of detector to be processed differently (reflecting different physics needs)
 - And particular algorithms can be switched out on fly

PFAlpha | ElCrecon Implementation

namespace eicrecon {

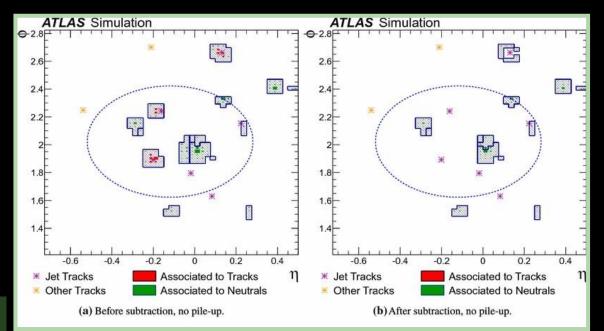
```
struct ParticleFlowConfig {
    // Note: the vector elements correspond
    // to different eta regions
    // [0] = negative
    // [1] = central
    // [2] = positive
    std::vector<int> flowAlgo = {0, 0, 0}; // choice of particle flow algorithm
    std::vector<float> ecalSumRadius = {1.0, 1.0, 1.0}; // radius of cone to sum energy from ecal clusters
    std::vector<float> hcalSumRadius = {1.0, 1.0, 1.0}; // radius of cone to sum energy from hcal clusters
    std::vector<float> hcalSumRadius = {1.0, 1.0, 1.0}; // fraction of track energy to subtract from ecal sum
    std::vector<float> hcalFracSub = {1.0, 1.0, 1.0}; // fraction of track energy to subtract from hcal sum
  };
```

// end eicrecon namespace

- $\circ~$ But this is already unwieldy for a simple PFA
 - Switching to JOmniFactory made it easy to into 3 factories
 - 1 for each eta region
 - Vastly simplifies user interface!
 - ∽ Only 5 parameters instead of 15!

- **Furthermore:** subtraction and merging steps in same algorithm will quickly bloat implementation file
 - Already big with only PFAlpha!
 - It could be prudent to split steps into 2 separate algorithms...

To-Do | Potential Workfest Tasks



1) Developing debugging and visualization tools

- AFAIK no general-purpose code to concisely visualize particles, tracks, and clusters at once
 - eg. something like ATLAS (shown right)
- Tools to do this would be HUGE help in debugging/performance studies
- Prepared (tiny) DD4Hep/EICrecon output with PF collections for development

RCF Path: /sphenix/user/danderson/jets/ForPFWorkfest

2) Continuing work on PR comments

ATLAS [arXiv:1703.10485]

To-Do | Final Comments

IF YOU SEE SOMETHING, SAY SOMETHING

- Please let me know if you see anything dumb or that can be improved!
 - There haven't been many eyeballs on this code yet
 - There are **much** better ways of doing things than I thought of
 - And even though PFAlpha is a baseline, it can and should be improved!

WE NEED YOU

- Particle Flow is a **BIG** project
 - Baselines will be in soon, but this is a challenging subject
 - And development will continue for the foreseeable future
 - There is LOTS of room to contribute to this effort
- And if you think of something PF-related you'd like to see implemented, talk to me!
 - I'll work with you to see that this gets implemented!

Discussion

Note ANote B