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Introduction - backward HCal

Requirements: https://eic.jlab.org/Requirements/

A future backward HCal shall provide functionality of a tail catcher for the high
resolution e/m calorimeter in electron identification, as well as for jet kinematics
measurement at small Bjorken x

Design considerations:
High efficiency for low energy neutron detection to study jets from low-x partons
Good spatial resolution to distinguish neutral/charged hadrons

Follow similar solutions as Forward HCal instead of STAR EEMC megatiles
Due to required quick dissasembly of STAR - the EEMC megatiles are no longer an
option
Can make adjustments to Forward HCal (LFHCAL) design, but no need to reinvent the
wheel
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Design

Sampling calorimeter with 10 alternating layers, 2.4𝜆0 (red), similar to Belle-II
KLM:

non-magnetic steel 4 cm
plastic scintillator 4 mm - follow forward HCal, can be thicker

Light collection by SiPM:
Candidate (to verify): S14160-1315PS https://www.hamamatsu.com/eu/en/product/
optical-sensors/mppc/mppc_mppc-array/S14160-1315PS.html

Electronics to follow solutions of other calorimetry systems (HGCROCv3 or
EICROC)

nHCal decoupled from the magnetic steel ⇒ more flexibility
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Geometry implementation in dd4hep

A simplified version with STAR EEMC tiles already present in the main ePIC
branch and included in the simulation campaigns up to November, stainless steel
as an absorber

Good enough for basic checks

Forward HCal-type geometry with 10 cm× 10 cm tiles implemented for December
campaign
Flux return steel surrounding nHCal (purple) in private branch ready for commit
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Geometry implementation in dd4hep - before December

60 𝜑 bins
12+10 𝜂 bins: STAR EEMC
tiles+extrapolation

A simplified version with STAR EEMC tiles already present in the simulation
campaigns up to November

Good enough for basic checks
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Overlap of calorimeters

Acceptance

Hits overlap

Subhadip Pal, CTU

Acceptance −3.5 < 𝜂 < −1.27 - approximate values

Overlaps with backward and barrel EMcals

Scattering may be important in these overlap regions
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Electron/hadron response
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40 mm Stainless Steel + 4 mm Scint
8 mm Tungsten + 4 mm Scint
4 mm DU + 4 mm Scint

40 layers of 40mm stainless steel+4mm
scintillator (for cross-check)

Subhadip Pal, CTU

Current design provides compensation - not crucial

Sampling fraction ≈ 1% - may need to be increased
This means a 1GeV hadron leaves similar signal to a EMIP = 7.5MeV across 10 layers

Tungsten provides good performance
May add a few layers in front like for LFHCAL

Idea to consider: enhance e/h to easier distinguish charged/neutral hadrons
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Low energy neutrons in jets

Brian Page, BNL

Backward-going jets coming from low-x partons and high y events
Interesting physics!

See more in presentation by Brian: https://indico.bnl.gov/event/20679/
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Neutral hadron reconstruction in a jet

Jets reconstructed with charged hadron showers

Missing a neutron will degrade the energy resolution of jets
Need good low energy neutron:

detection efficiency
position resolution to distinguish from charged hadrons

Need track-cluster matching to be able to see impact on neutrons vs. charged
hadrons within jets - Required for TDR
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Particle distributions going into nHCal

All MC particles hitting nHCal

Mean energy (total) of neutrons < E >= 2.38GeV, lowest E = 1GeV

Mean momentum of neutrons < p >= 2.12GeV/c, lowest p = 0GeV
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Summary table

Total energy
𝜂 < E > GeV inclusive n < E > GeV primary n

−4 < 𝜂 < −1 2.38GeV 2.38GeV
−2 < 𝜂 < −1 1.65GeV 1.65GeV
−3 < 𝜂 < −2 2.52GeV 2.52GeV
−4 < 𝜂 < −3 3.84GeV 3.84GeV

Momentum
𝜂 < p > GeV/c inclusive n < p > GeV/c primary n

−4 < 𝜂 < −1 2.12GeV/c 2.12GeV/c
−2 < 𝜂 < −1 1.32GeV/c 1.32GeV/c
−3 < 𝜂 < −2 2.29GeV/c 2.29GeV/c
−4 < 𝜂 < −3 3.67GeV/c 3.68GeV/c

Secondary neutrons have < E >−4<𝜂<−1= 1.0GeV and
< p >−4<𝜂<−1= 0.27GeV - constant vs. 𝜂
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Scattering may be a problem for jet energy reconstruction

Alexandr Prozorov, CTU

50% of neutrons scatter in backward EMCal

Scattered neutron may fall out of a jet
reconstruction cone

We need to study this in coordination with Jet-HF
PWG
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Neutron detection efficiency
Integration time dependence
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Sam Corey, OSU

Efficiency of requiring a hit with a sum of hit contributions energy integrated up
to tint and passing a threshold Eth, t0 = 0 (t0 from first hit - see backup)

Checked with simulation only - no digitization

EMIP is 0.75MeV per layer

Eth has the biggest impact

100 ns is good enough, but lower energy neutrons may need longer times

60% efficiency for E = 300MeV neutrons Eth = 0.1× EMIP = 75 keV and 100 ns
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Neutron detection efficiency
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Efficiency of requiring a hit with a sum of hit contributions energy integrated up
to tint and passing a threshold Eth

EMIP is 0.75MeV per layer
Eth = 0.1× EMIP = 75 keV and 100 ns provides good performance
Need lower threshold and longer signal integration for better performance at low
energy
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Distance between particle projections in nHCal

Resolution of 20 cm at high 𝜂 good enough to separate most particles

Can be even larger at smaller 𝜂

Generated particles = primaries only

Distributions normalized over the entire range, but zoomed in
0 < ΔRxy < 100 cm

11.1.2024 L. Kosarzewski OSU 16



Distance between clusters

Work in Progress: Nick Jindal, OSU

Similar results for clusters, qualitatively consistent with MC particle straight line
projections

Resolution of 20 cm seems good enough, peak at 30 cm for reco clusters (20 cm
for MC)

Hit merging across layers was disabled here
Clusters from different layers overlap in XY , cause excess around 0

11.1.2024 L. Kosarzewski OSU 17



Position resolution study - work in progress

Subhadip Pal, Alexandr Prozorov, CTU

Scattering in EMCal affects the position resolution
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Position resolution study

Scattering in EMCal and barrel affects the position resolution
Good resolution, but scattering makes it worse, especially in overlap region with
barrel
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Vector meson studies

Important for high y or low-pT vector mesons - depends on type

Increases acceptance

Need projected MIP tracks and MIP signals in backward HCal and EMCal
𝜇/𝜋 distinction important, position resolution...

Study of impact required for TDR
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Radiation length - brycecanyon geometry

∼ 24X0 for backward HCal

Scintillator tiles do not cover the same volume as steel absorber yet
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Interaction length - brycecanyon geometry

∼ 2.4𝜆0 for backward HCal

Scintillator tiles do not cover the same volume as steel absorber yet
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Summary

Conclusions

Presented basic concept for backward HCal for ePIC

Simplified geometry already in simulation campaign for STAR EEMC
geometry+extensions and LFHCAL-style (December)

Neutron detection possible down to E = 0.3GeV

Position resolution study in progress, but needs to be ≈ 20 cm

Work in progress on neutron reconstruction with machine learning
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BACKUP
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Jet particle distributions

Pythia simulation by Brian Page
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Jet particle distributions

Pythia simulation by Brian Page
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Primary particle distributions - eta and energy

Primary (generated) MC particles hitting nHCal

Mean energy of neutrons < E >= 2.38GeV

Large number of high E e− - from beam? (but these should have generator
status=4)
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Primary particle distributions - Energy vs. eta

Primary (generated) MC particles hitting nHCal

Mean energy of neutrons < E >−2<𝜂<−1= 1.65GeV and
< E >−3<𝜂<−2= 2.52GeV
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Primary particle distributions - Energy vs. eta

Primary (generated) MC particles hitting nHCal

Mean energy of neutrons < E >−4<𝜂<−3= 3.84GeV
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Primary particle distributions - Momentum

Primary (generated) MC particles hitting nHCal

Mean momentum of neutrons < p >= 2.12GeV/c
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Primary particle distributions - Momentum vs. eta

Primary (generated) MC particles hitting nHCal

Mean momentum of neutrons < p >−2<𝜂<−1= 1.32GeV/c and
< p >−3<𝜂<−2= 2.29GeV/c
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Primary particle distributions - Momentum vs. eta

Primary (generated) MC particles hitting nHCal

Mean momentum of neutrons < p >−4<𝜂<−3= 3.68GeV/c

11.1.2024 L. Kosarzewski OSU 32



LFHCal design
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LFHCal layers
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LFHCal PCBs
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LFHCal PCBs
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Particle distributions - eta and energy

All MC particles hitting nHCal

Mean energy of neutrons < E >= 2.38GeV

Large number of high E e− - from beam?
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Particle distributions - Energy vs. eta

All MC particles hitting nHCal

Mean energy of neutrons < E >−2<𝜂<−1= 1.65GeV and
< E >−3<𝜂<−2= 2.52GeV
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Particle distributions - Energy vs. eta

All MC particles hitting nHCal

Mean energy of neutrons < E >−4<𝜂<−3= 3.84GeV
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Particle distributions - Momentum

All MC particles hitting nHCal

Mean momentum of neutrons < p >= 2.12GeV/c
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Particle distributions - Momentum vs. eta

All MC particles hitting nHCal

Mean momentum of neutrons < p >−2<𝜂<−1= 1.32GeV/c and
< p >−3<𝜂<−2= 2.29GeV/c
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Particle distributions - Momentum vs. eta

All MC particles hitting nHCal

Mean momentum of neutrons < p >−4<𝜂<−3= 3.67GeV/c
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Summary table

Energy
𝜂 < E > GeV inclusive n < E > GeV primary n

−4 < 𝜂 < −1 2.38GeV 2.38GeV
−2 < 𝜂 < −1 1.65GeV 1.65GeV
−3 < 𝜂 < −2 2.52GeV 2.52GeV
−4 < 𝜂 < −3 3.84GeV 3.84GeV

Momentum
𝜂 < p > GeV/c inclusive n < p > GeV/c primary n

−4 < 𝜂 < −1 2.12GeV/c 2.12GeV/c
−2 < 𝜂 < −1 1.32GeV/c 1.32GeV/c
−3 < 𝜂 < −2 2.29GeV/c 2.29GeV/c
−4 < 𝜂 < −3 3.67GeV/c 3.68GeV/c

Secondary neutrons have < E >−4<𝜂<−1= 1.0GeV and
< p >−4<𝜂<−1= 0.27GeV - constant vs. 𝜂
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Neutron detection efficiency

Integration time dependence
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Efficiency of requiring a hit with a sum of hit contributions energy integrated up
to tint and passing a threshold Eth

Checked with simulation only - no digitization

EMIP is 0.75MeV per layer

Eth has the biggest impact

100 ns is good enough, but lower energy neutrons may need longer times

t0 starting from the first hit
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Neutron detection efficiency
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Efficiency of requiring a hit with a sum of hit contributions energy integrated up
to tint and passing a threshold Eth

EMIP is 0.75MeV per layer
Eth = 0.1× EMIP = 75 keV and 100 ns provides good performance
Need lower threshold and longer signal integration for better performance at low
energy
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Distance between particle projections in nHCal, both in −4𝜂 < −1

Both particles in −4𝜂 < −1
Resolution of 20 cm at high 𝜂 good enough to separate most particles
Can be even larger at smaller 𝜂
Generated particles = primaries only
Distributions normalized over the entire range, but zoomed in
0 < ΔRxy < 100 cm
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