Status of backward HCal development

Leszek Kosarzewski

Ohio State University

ePIC Collaboration meeting, ANL 11.1.2024

Backward HCal design

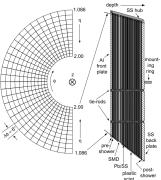
2 Geometry implementation in dd4hep

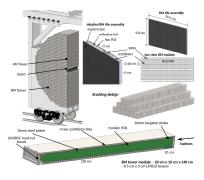
Backward-going jets

- Low energy neutrons in jets
- Low energy neutron detection
- Position resolution

4 Vector meson studies

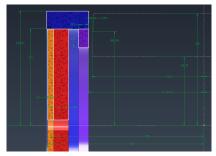
Primary (generated) particles - backup

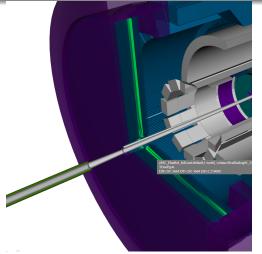

- Energy vs. eta
- Momentum vs. eta


6 LFHCal - backup

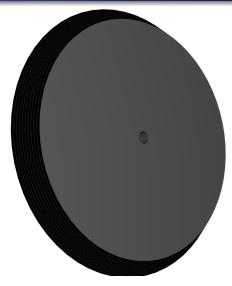
Introduction - backward HCal

Requirements: https://eic.jlab.org/Requirements/


A future backward HCal shall provide functionality of a tail catcher for the high resolution e/m calorimeter in electron identification, as well as for jet kinematics measurement at small Bjorken \times


- Design considerations:
 - High efficiency for low energy neutron detection to study jets from low-x partons
 - · Good spatial resolution to distinguish neutral/charged hadrons
- Follow similar solutions as Forward HCal instead of STAR EEMC megatiles
 - Due to required quick dissasembly of STAR the EEMC megatiles are no longer an option
 - Can make adjustments to Forward HCal (LFHCAL) design, but no need to reinvent the wheel

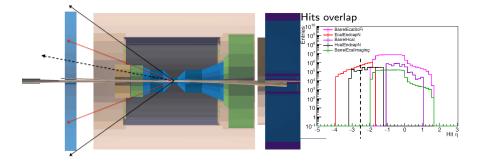
- Sampling calorimeter with 10 alternating layers, $2.4\lambda^0$ (red), similar to Belle-II KLM:
 - non-magnetic steel 4 cm
 - plastic scintillator 4 mm follow forward HCal, can be thicker
- Light collection by SiPM:
 - Candidate (to verify): S14160-1315PS https://www.hamamatsu.com/eu/en/product/ optical-sensors/mppc/mppc_mppc-array/S14160-1315PS.html
- Electronics to follow solutions of other calorimetry systems (HGCROCv3 or EICROC)


 $\bullet\,$ nHCal decoupled from the magnetic steel \Rightarrow more flexibility

Geometry implementation in dd4hep

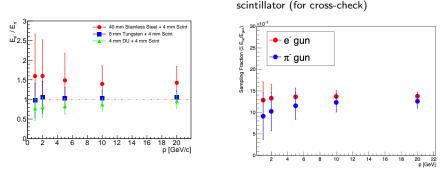
- A simplified version with STAR EEMC tiles already present in the main ePIC branch and included in the simulation campaigns up to November, stainless steel as an absorber
 - Good enough for basic checks
- Forward HCal-type geometry with $10 \text{ cm} \times 10 \text{ cm}$ tiles implemented for December campaign
- Flux return steel surrounding nHCal (purple) in private branch ready for commit

Geometry implementation in dd4hep - before December


60 ϕ bins 12+10 η bins: STAR EEMC tiles+extrapolation

<!-- Definition of the readout segmentation/definition --> <readout name="HcalEndcapNHits"> <segmentation type="PolarGridRPhi2" grid r values="HcalEndcapN seaments rmin 23,7336*cm 28,0062*cm 32,7836*cm 38.0859*cm 43.9297*cm 50.3297*cm 57.2972*cm 64.8401*cm 72.966*cm 81.6805*cm 90.9878*cm 100.89*cm 111.395*cm 122.516*cm 134.229*cm 146.58*cm 159.546*cm 173.155*cm 187.424*cm 202.377*cm 218.019*cm 234.353*cm HcalEndcapN segments rmax" grid phi values="6*deg 6*deg 6*dea 6*deg 6*dea * offset phi="0.0*deg"/> <id>system:8,barrel:3,module:4,laver:8,slice:5,r:32:-16,phi:-16</id> </readout> </readouts>

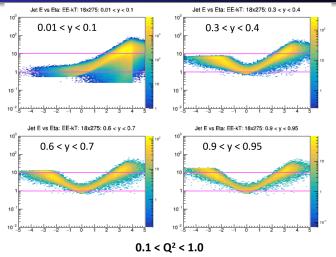
- A simplified version with STAR EEMC tiles already present in the simulation campaigns up to November
 - · Good enough for basic checks


Overlap of calorimeters

Acceptance

Subhadip Pal, CTU

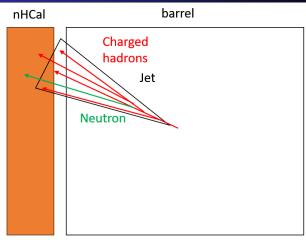
- Acceptance $-3.5 < \eta < -1.27$ approximate values
- Overlaps with backward and barrel EMcals
- Scattering may be important in these overlap regions

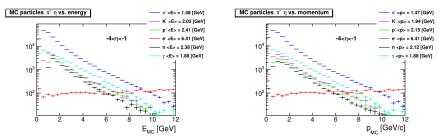


Subhadip Pal, CTU

40 layers of 40 mm stainless steel+4 mm

- Current design provides compensation not crucial
- \bullet Sampling fraction $\approx 1\%$ may need to be increased
 - $\bullet\,$ This means a $1\,{\rm GeV}$ hadron leaves similar signal to a ${\it E_{MIP}}=7.5\,{\rm MeV}$ across 10 layers
- Tungsten provides good performance
 - May add a few layers in front like for LFHCAL
- Idea to consider: enhance e/h to easier distinguish charged/neutral hadrons


Low energy neutrons in jets

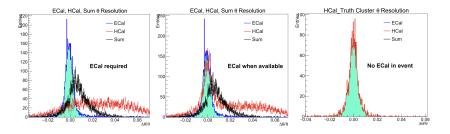

Brian Page, BNL

- Backward-going jets coming from low-x partons and high y events
 - Interesting physics!
- See more in presentation by Brian: https://indico.bnl.gov/event/20679/

Neutral hadron reconstruction in a jet

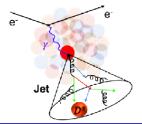
- Jets reconstructed with charged hadron showers
- Missing a neutron will degrade the energy resolution of jets
- Need good low energy neutron:
 - detection efficiency
 - position resolution to distinguish from charged hadrons
- Need track-cluster matching to be able to see impact on neutrons vs. charged hadrons within jets Required for TDR

- All MC particles hitting nHCal
- Mean energy (total) of neutrons < E >= 2.38 GeV, lowest E = 1 GeV
- Mean momentum of neutrons = 2.12 GeV/c, lowest p = 0 GeV

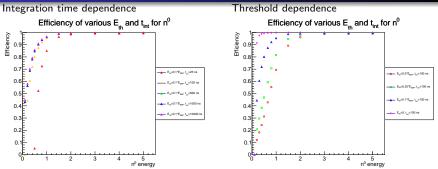

Total energy			
η	$< E > { m GeV}$ inclusive n	$< E > { m GeV}$ primary n	
$-4 < \eta < -1$	$2.38~{ m GeV}$	$2.38~{ m GeV}$	
$ -2 < \eta < -1$	$1.65~{ m GeV}$	$1.65~{ m GeV}$	
$ -3 < \eta < -2$	$2.52~{ m GeV}$	$2.52~{ m GeV}$	
$-4 < \eta < -3$	$3.84~{ m GeV}$	$3.84~{ m GeV}$	

N	10	m	e٢	۱t	 m

η	GeV/c inclusive n	$ { m GeV/c}$ primary n	
$-4 < \eta < -1$	$2.12 \mathrm{GeV/c}$	$2.12 \mathrm{GeV/c}$	
$-2 < \eta < -1$	$1.32{ m GeV/c}$	$1.32{ m GeV/c}$	
$-3 < \eta < -2$	$2.29\mathrm{GeV/c}$	$2.29\mathrm{GeV/c}$	
$-4 < \eta < -3$	$3.67~{ m GeV/c}$	$3.68{ m GeV/c}$	

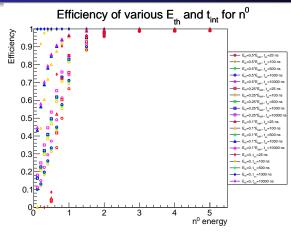

• Secondary neutrons have $< E>_{-4<\eta<-1}=1.0~{\rm GeV}$ and $_{-4<\eta<-1}=0.27~{\rm GeV}$ - constant vs. η

Alexandr Prozorov, CTU

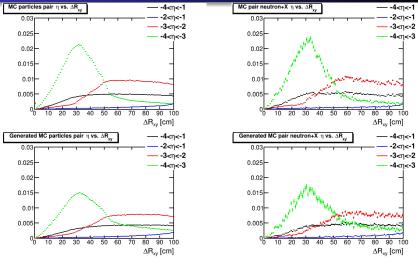


 e^+ Au $\rightarrow e^-$ + $jet(D^{\pm})$ + X

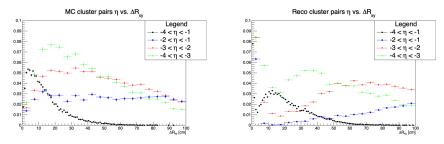
- 50% of neutrons scatter in backward EMCal
- Scattered neutron may fall out of a jet reconstruction cone
- We need to study this in coordination with Jet-HF PWG


Neutron detection efficiency

Sam Corey, OSU

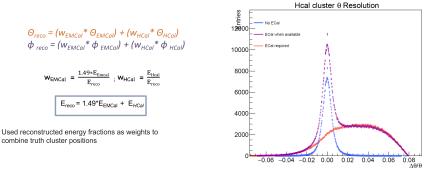

- Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th} , $t_0 = 0$ (t_0 from first hit see backup)
- Checked with simulation only no digitization
- E_{MIP} is 0.75 MeV per layer
- *E_{th}* has the biggest impact
- $\bullet~100~\mathrm{ns}$ is good enough, but lower energy neutrons may need longer times
- 60% efficiency for $E=300~{
 m MeV}$ neutrons $E_{th}=0.1 imes E_{MIP}=75~{
 m keV}$ and 100 ${
 m ns}$

Neutron detection efficiency



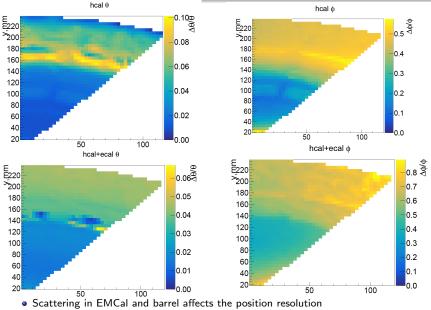
- Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th}
- E_{MIP} is 0.75 MeV per layer
- $E_{th} = 0.1 \times E_{MIP} = 75 \text{ keV}$ and 100 ns provides good performance
- Need lower threshold and longer signal integration for better performance at low energy

Distance between particle projections in nHCal

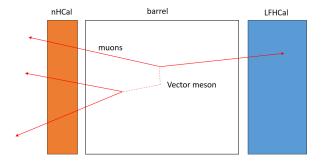


- ullet Resolution of 20 ${\rm cm}$ at high η good enough to separate most particles
- Can be even larger at smaller η
- Generated particles = primaries only
- Distributions normalized over the entire range, but zoomed in $0 < \Delta R_{xy} < 100~{
 m cm}$

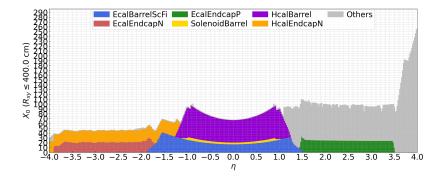
Work in Progress: Nick Jindal, OSU


- Similar results for clusters, qualitatively consistent with MC particle straight line projections
- $\bullet\,$ Resolution of 20 ${\rm cm}\,$ seems good enough, peak at 30 ${\rm cm}\,$ for reco clusters (20 ${\rm cm}\,$ for MC)
- Hit merging across layers was disabled here
 - Clusters from different layers overlap in XY, cause excess around 0

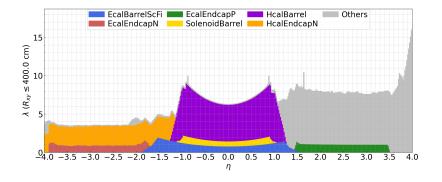
Subhadip Pal, Alexandr Prozorov, CTU


• Scattering in EMCal affects the position resolution

Position resolution study

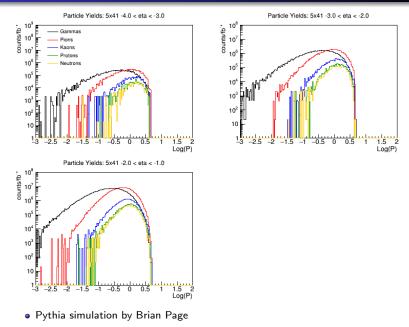


 Good resolution, but scattering makes it worse, especially in overlap region with barrel

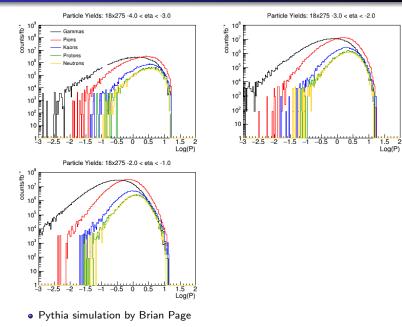

L. Kosarzewski

- Important for high y or low- p_T vector mesons depends on type
- Increases acceptance
- Need projected MIP tracks and MIP signals in backward HCal and EMCal
 - μ/π distinction important, position resolution...
- Study of impact required for TDR

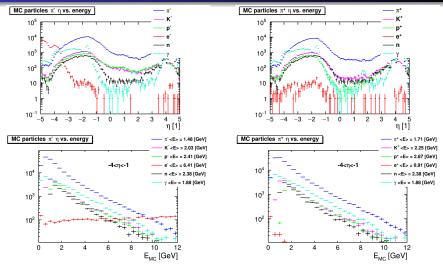
- $\sim 24X_0$ for backward HCal
- Scintillator tiles do not cover the same volume as steel absorber yet


- $\bullet~\sim 2.4\lambda_0$ for backward HCal
- Scintillator tiles do not cover the same volume as steel absorber yet

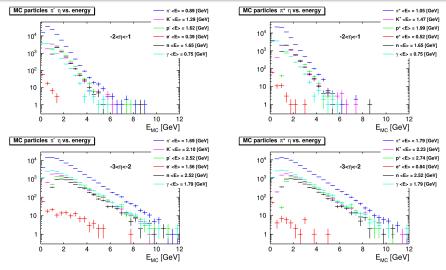
Conclusions


- Presented basic concept for backward HCal for ePIC
- Simplified geometry already in simulation campaign for STAR EEMC geometry+extensions and LFHCAL-style (December)
- $\bullet\,$ Neutron detection possible down to $E=0.3\,{\rm GeV}$
- $\bullet\,$ Position resolution study in progress, but needs to be $\approx 20\,\mathrm{cm}$
- Work in progress on neutron reconstruction with machine learning

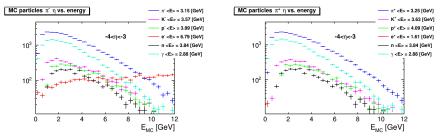
BACKUP


Jet particle distributions

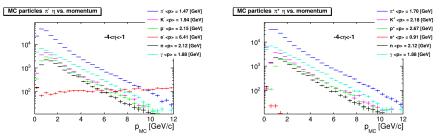
Jet particle distributions



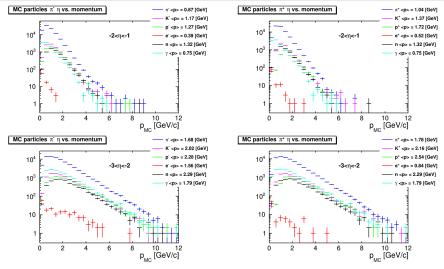
Primary particle distributions - eta and energy



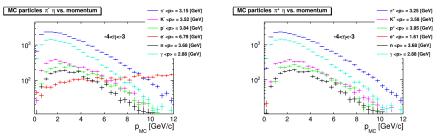
- Primary (generated) MC particles hitting nHCal
- Mean energy of neutrons $< E >= 2.38 \, {
 m GeV}$
- Large number of high $E e^-$ from beam? (but these should have generator status=4)


Primary particle distributions - Energy vs. eta

- Primary (generated) MC particles hitting nHCal
- $\bullet\,$ Mean energy of neutrons $< E>_{-2<\eta<-1}=1.65~{\rm GeV}$ and $< E>_{-3<\eta<-2}=2.52~{\rm GeV}$

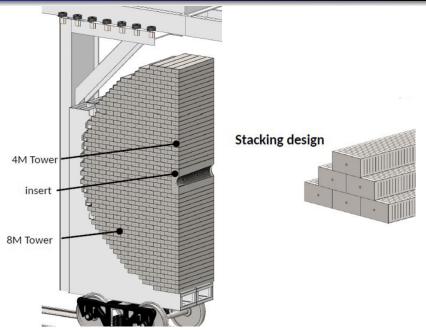


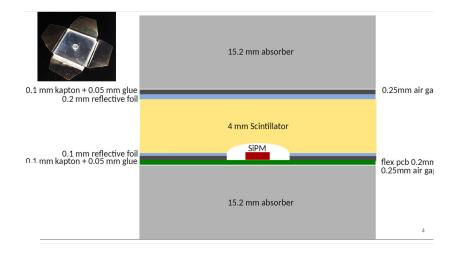
- Primary (generated) MC particles hitting nHCal
- Mean energy of neutrons $< E >_{-4 < \eta < -3} = 3.84 \, {
 m GeV}$

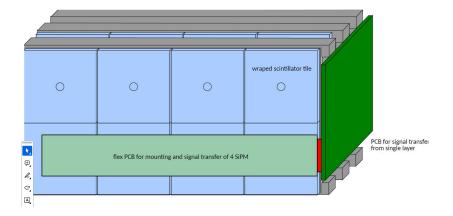


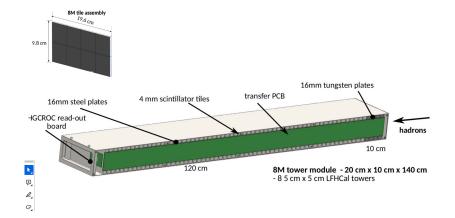
- Primary (generated) MC particles hitting nHCal
- Mean momentum of neutrons $= 2.12 \, {
 m GeV/c}$

Primary particle distributions - Momentum vs. eta

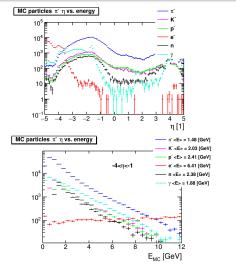


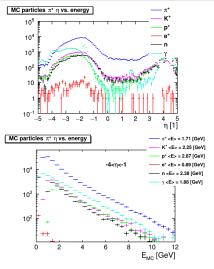

- Primary (generated) MC particles hitting nHCal
- \bullet Mean momentum of neutrons $_{-2<\eta<-1}=1.32~{\rm GeV/c}$ and $_{-3<\eta<-2}=2.29~{\rm GeV/c}$

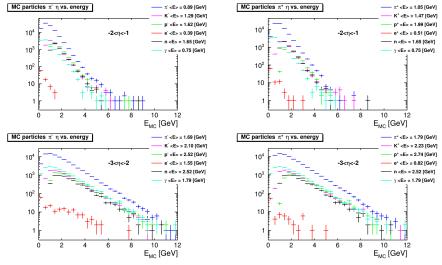


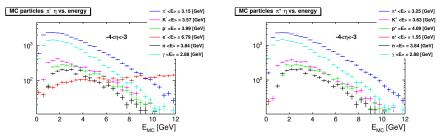

- Primary (generated) MC particles hitting nHCal
- $\bullet\,$ Mean momentum of neutrons $_{-4 < \eta < -3} = 3.68 \, {\rm GeV/c}$

LFHCal design

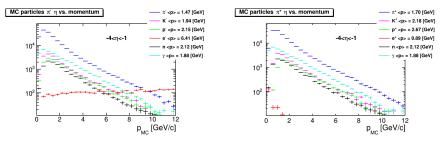




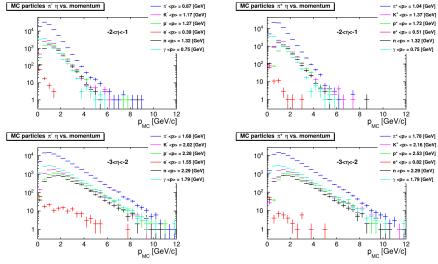

Particle distributions - eta and energy


- All MC particles hitting nHCal
- Mean energy of neutrons $< E >= 2.38 \, {
 m GeV}$
- Large number of high E e⁻ from beam?

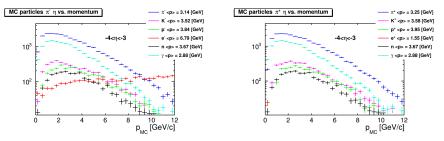
Particle distributions - Energy vs. eta


- All MC particles hitting nHCal
- $\bullet\,$ Mean energy of neutrons $< E>_{-2<\eta<-1}=1.65~{\rm GeV}$ and $< E>_{-3<\eta<-2}=2.52~{\rm GeV}$

Particle distributions - Energy vs. eta


- All MC particles hitting nHCal
- Mean energy of neutrons $< E >_{-4 < \eta < -3} = 3.84 \text{ GeV}$

Particle distributions - Momentum

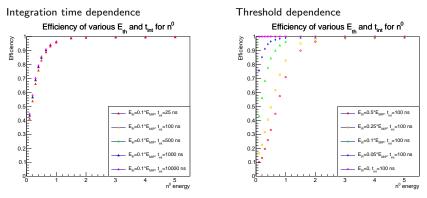


- All MC particles hitting nHCal
- Mean momentum of neutrons $= 2.12 \, {
 m GeV/c}$

Particle distributions - Momentum vs. eta

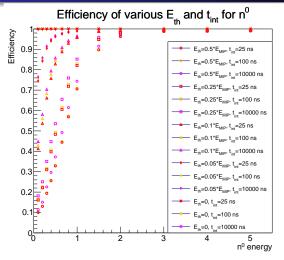
- All MC particles hitting nHCal
- $\bullet\,$ Mean momentum of neutrons $_{-2<\eta<-1}=1.32\,{\rm GeV/c}$ and $_{-3<\eta<-2}=2.29\,{\rm GeV/c}$

- All MC particles hitting nHCal
- $\bullet\,$ Mean momentum of neutrons $_{-4 < \eta < -3} = 3.67\,{\rm GeV/c}$

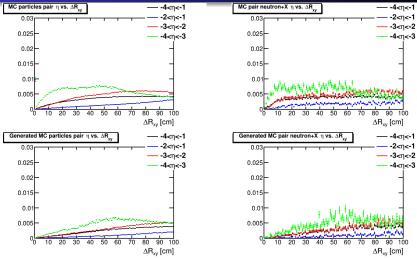

Energy			
η	< E > GeV inclusive n	$< E > { m GeV}$ primary n	
$-4 < \eta < -1$	$2.38~{ m GeV}$	$2.38~{ m GeV}$	
$ -2 < \eta < -1$	$1.65~{ m GeV}$	$1.65~{ m GeV}$	
$ -3 < \eta < -2$	$2.52~{ m GeV}$	$2.52~{ m GeV}$	
$-4 < \eta < -3$	$3.84~{ m GeV}$	$3.84~{ m GeV}$	

M	om	nen	tu	m

η	$ { m GeV/c}$ inclusive n	$ { m GeV/c}$ primary r	
$-4 < \eta < -1$	$2.12 \mathrm{GeV/c}$	$2.12 \mathrm{GeV/c}$	
$-2 < \eta < -1$	$1.32{ m GeV/c}$	$1.32 \mathrm{GeV/c}$	
$-3 < \eta < -2$	$2.29\mathrm{GeV/c}$	$2.29 \mathrm{GeV/c}$	
$-4 < \eta < -3$	$3.67~{ m GeV/c}$	$3.68 { m GeV/c}$	


• Secondary neutrons have $< E>_{-4<\eta<-1}=1.0~{\rm GeV}$ and $_{-4<\eta<-1}=0.27~{\rm GeV}$ - constant vs. η

Neutron detection efficiency


- Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th}
- Checked with simulation only no digitization
- E_{MIP} is 0.75 MeV per layer
- E_{th} has the biggest impact
- $\bullet~100~\mathrm{ns}$ is good enough, but lower energy neutrons may need longer times
- t₀ starting from the first hit

Neutron detection efficiency

- Efficiency of requiring a hit with a sum of hit contributions energy integrated up to t_{int} and passing a threshold E_{th}
- E_{MIP} is 0.75 MeV per layer
- $E_{th} = 0.1 \times E_{MIP} = 75 \ {
 m keV}$ and 100 ${
 m ns}$ provides good performance
- Need lower threshold and longer signal integration for better performance at low energy

- Both particles in $-4\eta < -1$
- $\bullet\,$ Resolution of 20 $\rm cm$ at high η good enough to separate most particles
- $\bullet\,$ Can be even larger at smaller η
- Generated particles = primaries only
- Distributions normalized over the entire range, but zoomed in $0 < \Delta R_{xy} < 100 \ {\rm cm}$