### Cherenkov Angle

Cherenkov cone emitted by particle

Angular definition is taken in the track local frame (z along  $\vec{p}$ ) The critical angular resolution is on polar angle



#### dRICH PID

Focusing on the most demanding case: gas radiator at high momenta (small angles)



#### dRICH Angular Resolution



SPE = single phton electron (YR study)

Packed optics in ePIC envelope, with mirror focalization optimized for the small angles



## Angular Definition



Z



### **Azimuthal Angle**

 $\delta\theta$  = mis-reconstruction in the lab cylindrical coordinate frame  $\delta\theta^*(\psi)$  = mis-reconstruction in the track local frame (z along  $\vec{p}$ )



# **Azimuthal Angle**

 $\delta \phi$  = mis-reconstruction in the lab cylindrical coordinate frame  $\Delta \phi^*$  = mis-reconstruction in the track local frame (z along  $\overrightarrow{p}$ )



- a 0.5 mrad track resolution (mainly on θ) is essential to not spoil the dRICH performance (there could be a limited tolerance but dRICH focalization is expected to improve)
- dRICH encodes

a polar angular information at the level of 0.3 mrad (gas case) (might be used to improved dRICH or track resolution)

a time information that could approach the TOF ballpark (might be useful to resolve ambiguities or mark wrong trajectories)