From Geant4 to Reconstruction

CalorimeterHitDigi
Summed energy - ADC
Time and cellld from
most energetic hit

Re-translation ADC
—> physical value

SiliconTrackerDigi

From Geant4: Mostly 1-1

Uses energy deposition
Simulated Hits Rare multiple hits in a
Location cell are summed
Energy deposition
Time PhotoMultiplierHitDigi

Track Reco
*RecHits
» Vertex, Tracker, Y
Barrel, Endcap, ... Jet Finding
A
Clustering
*RecHits
HCal, Ecal,)
Barrel, Endcap, ... Particle
Flow
PID Hypothesis

HitDigi == HitRaw, the terms are used interchangeably

Code lives in
eicrecon/src/algorithms/digi/

& ~"((

We use pedestal and o XOR no threshold

Code lives in
eicrecon/src/detectors/*/

»

»

From here on, there is (should be) no
differentiati etween ¢

{(‘((u\i\

Pertinent Code in SiliconTrackerDigi.cc

for (const auto& sim_hit : sim_hits) {
// time smearing
double time_smearing = m_gauss(Q);
double result_time = sim_hit.getTime() + time_smearing;
auto hit_time_stamp = (std::int32_t) (result_time * le3);

if (cell_hit_map.count(sim_hit.getCellID()) == @) {
// This cell doesn't have hits
cell_hit_map[sim_hit.getCellID()] = {
sim_hit.getCellIDQ),
(std::int32_t) std::1lround(sim_hit.getEDep() * 1e6),
hit_time_stamp // ns->ps
};
} else {
// There 1is previous values in the cell
auto& hit = cell_hit_map[sim_hit.getCellID()];

// keep earliest time for hit
auto time_stamp = hit.getTimeStamp();
hit.setTimeStamp(std: :minChit_time_stamp, hit.getTimeStamp()));

// sum deposited energy
auto charge = hit.getChargeQ);
hit.setCharge(charge + (std::int32_t) std::1lround(sim_hit.getEDep() * 1e6));

Observations

0. CalorimeterHitDigi.cc differes in details, not fundamentals
1. Both integrate over the entire slice time and assign just one time value
—> problematic for length ~2 us, untenable for length ~5 ms
2. Time resolutions exist, currently only used for
* smearing in silicon
* ADC resolution in calorimeters (similar in spirit)
3. TrackerHitReconstruction.cc:

rec_hits->create(
raw_hit.getCellID(), // Raw DD4hep cell ID
edmdhep: :Vector3f{static_cast<float>(pos.x() / mm), static_cast<float>(pos.y() / mm),
edmdeic: :CovDiag3f{get_variance(dim[@] / mm), get_variance(dim[1l] / mm), // variance
std::size(dim) > 2 ? get_variance(dim[2] / mm) : 0.},
static_cast<float>((double)(raw_hit.getTimeStamp()) / 1000.0), // ns

m_cfg.timeResolution, // in ns
static_cast<float>(raw_hit.getCharge() / 1.0e6), // Collected energy (GeV)
0.0F); // Error on the energy

- Raw Hits do have timing resolution information (not as covariance)
(Calorimeter Raw Hits do have a timeResolution field, currently unfilled as
far as | can tell)

Questions/Tasks

0. What actually is the integration time? Every time | think | know, somebody tells
me | don’t.
1. We need to start a new time bucket after the integration time (inside a slice).
1. What triggers such a new bucket?
2. What time should it have (the exact time at the beginning? In the middle?
The beginning == end of previous bucket?
2. Apart from the far backward region, do we need to take beam crossing times,
and offsets during to z-position, into account?
3. How does the time resolution included in the raw tracker hits currently enter
into ACTS? How should it?
1. Any reason to use a 4-covariance in raw hits already?

Future, not now: A full daq length slice almost must be pre-processed into candidate
events, especially if seeding cannot use time information.

(I

