

Introduction to Radiation Sensors Readout ICs and Measurements

G.W. Deptuch, S. Mandal

EDIT 2023

Covered:

Part 1

- Solid-State sensors as a source of charge signal
- Short Introduction to Integrated Circuits technology
- Typical Front-End Processing chain in nuclear electronics
- Types and methods of measurement achieved with Front-End circuits
- Elements of Back-End Processing chain in nuclear electronics

Part 2

- Introduction to Digitization and Digital Signal Processing
- Illustrations of practical realizations

People

Grzegorz W. Deptuch <u>gdeptuch@bnl.gov</u> Soumyajit Mandal <u>smandal@bnl.gov</u> Prashansa Mukim <u>pmukim@bnl.gov</u> Md Arif Iqbal <u>miqbal@bnl.gov</u>

Transistors + IC Technology - 2

 32×32 pixels matrix obtained by tiling 4×4 basic 8×8 pixels groups \Rightarrow suitable for continued tiling.

Transistors + IC Technology - 3

Brookhaven[•] National Laboratory

about 4,000 transistors / pixel (100 ×100 μ m²), 20 : 80 analog : digital

Application

Introduction to IC Technology - 1

construction of vacuum tubes was complex, their cost was high, but above all they were bulky (not good candidates for miniaturization)

tubes are still loved by audiophiles for soft, warm and highest fidelity in sound

first electronic components, allowing nonlinear functions were vacuum tubes

National Laboratory

Transistors and Amplifiers - 1

Transistors and Amplifiers - 2

Transistors and Amplifiers - 3

basic, inverting voltage amplifier with operational amplifier

Operational amplifier:

- infinite input impedance ⇒ no current flowing into input of amplifier;
- infinite voltage gain
 needs feedback circuit to operate, otherwise act as inverter/comparator;
- infinite frequency bandwidth

 characteristics decided by feedback network;
- zero output impedance
 can act as voltage source;

Operational amplifier does not exist in nature, but it is well approximated by actual designs:

- input impedance \Rightarrow M Ω -G Ω with dominating capacitive component;
- voltage gain \Rightarrow 100dB; M Ω -G Ω ;

Brookhaven National Laboratory

 frequency bandwidth ⇒ low, kHz, but due to gain-bandwidth exchange sufficient; writing down Kirchhoff's Voltage and Current Laws:

Sensors and readout ICs

Geometries of Solid-State Sensors

STRIPS

Strips sensors deliver 1D - (sometimes 2D – but prone to ambiguity) aware information about incident radiation

both types of sensors may be used to measure time of arrival

Readout ICs

1 Ianalog channel 5.7 mm F Б

OLArASIC_P4 180 nm CMOS 7.2 mm

National Laboratory

[16 channel Analog Front-End for liquid Ar TPC readout] Brookhaven

mm

[pixel readout IC 32×32 pixels @100 μ m sq pitch]

Sensors read out by charge sensitive electronics:

- deliver at their output short current pulse, whenever ionizing radiation interacts with their sensitive regions;
- charge carried by output current pulse of sensor is linearly related to energy released by radiation in sensitive region of sensor (mean value);
- typically produce small portions of charge:
 - small energy released;
 - low sensor's sensitivity;

Noise of first amplification stages degrades accuracy in measurements

Accuracy may also be degraded when:

- sensor is exposed to relatively high radiation intensity + time separation between single events is short, leading to;
 - baseline fluctuations;
 - pulse-on-pulse pile-up effects;
- time which is available to perform charge measurements is reduced (e.g., beam crossing cadence);
- interferences, common modes, ground bouncing, etc. ⇒ baseline fluctuations ;

Measurement of energy released by nuclear event in sensitive region of sensors must be considered performed:

- once analog quantity which carrier information of such energy, or charge delivered by sensors, is converted by Analog-to-Digital converter (ADC) or Time-to-Digital Converter (TDC) into number;
- · and obtained number is stored in digital memory;

To be suitable for ADC, current pulse delivered by sensor must undergo several operations:

- aiming at delivering to ADC signal with suitable characteristic to guarantee correct conversion (antialiasing);
- reducing accuracy degradation.

response depends on CD that may change with for example HV bias applied

How to prevent saturation: clipping network aka pole-zero cancellation

not rigorous in representing polarity

ratio R/R' allows adding voltage gain

Typical charge processing chain - 4 How to make response independent of C_D: $\int_{C_{f}} \frac{Q}{c_{f}} e^{-t/R_{f}C_{f}} = -\frac{R}{R+R'}Q\frac{R'(nC_{f})}{C_{f}}e^{-\frac{t}{R+R'}}Q\frac{R'(nC_{f})}{C_{f}}e^{-\frac{t}{R+R'}}$

 R_{Z}/n

n×C_Z

R'

clipping network

 $R_f C_f = \frac{R_Z}{n} \cdot (nC_z)$

V_{OUT}(t)

stage

transresitance

sensor

Tc_□

δ

 \bigoplus

i(t)

because of infinite gain of

amplifier, there is no current

flowing through C_D and R_D

V_{in}(t)

VN

R charge

gnd

stage

signal amplitude is multiplied how many times nC_f is larger than C_f charge gain

Other options of filters:

3rd order semi-gaussian shaping filter with one real pole and one pairs of complex conjugate poles

- $R_{pr} = 571.6 \text{ k}\Omega$ $C_{pr} = 304 \text{ fF}$ $R_{pc11} = 183.2 \text{ k}\Omega / 7 = 26.17 \text{ k}\Omega$ $C_{pc11} = 4.52 \text{ pF}$ $R_{pc12} = 183.2 \text{ k}\Omega$ $C_{pc12} = 304 \text{ pF} / 2 = 152 \text{ pF}$ $R_{pc13} = 183.2 \text{ k}\Omega$ I current DAC = +250 nA (baseline) + 1uA (polarity)
 - capacitance C_c is coupling capacitance for last stage of CSA

ADVANCED

$$H_t(s) = \frac{1}{s} \frac{-sC_cR_{pr}}{sC_{pr}R_{pr} + 1} \frac{1}{s^2C_{pc11}C_{pc12}R_{pc12}R_{pc13} + sC_{pc12}R_{pc12}\left(1 + \frac{R_{pc13}}{R_{pc11}} + \frac{R_{pc13}}{R_{pc12}}\right) + 1} = \frac{-sC_cR_{pr}}{sC_{pr}R_{pr} + 1} \frac{-A_v}{\frac{s^2}{\omega_0^2} + \frac{s}{\omega_0Q} + 1}$$

- DAC current injected into node 'd' to avoid additional parallel noise that would be added in case of using the node 'a',
- relatively large value of R_{pc12} allows achieving efficient voltage shifts of baseline with low current of DAC that limits power consumption.

5th order semi-gaussian shaping filter with one real pole and two pairs of complex conjugate poles²⁰

How preamplifier is designed with no resistors:

[◆] G. De Geronimo et al, "A CMOS detector leakage current self-adaptable continuous reset system: theoretical analysis", Nucl. Instr. Meth. A 421 (1999) 322-333

[♥] G. De Geronimo et al, "Front-End ASIC for a GEM Based Time Projection Chamber", IEEE Trans. Nucl. Sci Vol. 51, No. 4, August 2004 1313-1317

still one can see resistors ! resistance of transistors' channels controlled by gate voltages

G. W. Deptuch, P. Otfinowski, "Charge Sensitive Amplifier with Pole-Zero Cancellation", provisional patent application USPTO Serial No. 63/379,887

ADVANCED

characteristic parameters of typical materials for semiconductor sensors

	quantity	Si	Ge	GaAs	Diamond	CdTe	Cd _{0.9} Zn _{0.1} Te	TIBr	a-Si
Ven ⁻ ratory	E _a [eV]	1.12	0.67	1.43	5.50	1.44	1.57	2.68	1.90
	W [eV]	3.60	2.96	4.20	13.00	4.43	4.64	6.50	6.00
	3	11.7	16.0	12.8	5.7	10.9	10.0	30.0	12
	μ _e [cm²/(Vs) ⁻¹]	1350	3900	8000	1800	1100	1000	30	1-4
	μ _h [cm²/(Vs) ⁻¹]	450	1900	400	1200	100	120	4	0.05
	ρ [g/cm³]	2.33	5.33	5.32	3.52	5.85	5.78	7.56	2.30

Brookha

National Labor

Other types of sensors:

- gas ionization chambers;
- proportional counters;
- scintillation sensors

Noise - 1

Noise - 2

much simplified and brief analysis:

- C_C is large so it can be replaced by short
- C_i is input capacitance of amplifier (1st transistor gate)
- R_f , R_D are large, so consider as opens, but look at noise contribution!
- replace p-z by CR-RC cascade

noise power at output of integrator:

currents
$$\left(2q(I_D + I_G) + 4kT\left(\frac{1}{R_D} + \frac{1}{R_f}\right)\right)\frac{1}{\omega^2 C_f^2}$$

voltages $4kT\frac{\left(C_i + C_D + C_f\right)^2}{C_f^2}\frac{0.7}{g_m}$
CR-RC filter $H(j\omega) = \frac{1}{1 + j\omega RC}\frac{j\omega RC}{1 + j\omega RC}$
 $\left[\frac{power spectrum}{at output}\right] = \left[\frac{power spectrum}{at input}\right]|H(j\omega)|^2$
 $|RMS NOISE|^2 = \int_0^\infty \left[\frac{power spectrum}{at output}\right]df$ $\omega = 2\pi f$

we know that peak amplitude is Q/C_f , so ENC is at Room Temperature:

 g_m

because

$$ENC = 17.36 \left[1.45 \frac{\left(C_i + C_D + C_f\right)^2}{g_m} \frac{1}{\tau_p} + \left\{ 40(I_D + I_G) + 2070 \left(\frac{1}{R_D} + \frac{1}{R_f}\right) \right\} \tau_p \right]^{1/2}$$

let's design detecting system so that parallel noise is negligible and knowing that C_f is small:

$$ENC = 21(C_D + C_i) \left[\frac{1}{g_m \tau_p}\right]^{1/2}$$
so, for C_D and C_i in pF, g_m in mS and τ_p in
µs, for τ_p =1 and g_m=10
=> ENC≈6e⁻/pF

It is possible to find relation between C_D and C_i minimizing ENC

Noise (summary) - 3

National Laboratory

pulse above the baseline

stays above a threshold

Measurements - 2

noise superimposes on signal

Major sources of noise:

- noise generated in power supplies (most of sensors are operated in single ended configuration)
 - optimize system and design;
- interferences: capacitive, inductive that penetrate:
 - · individually to each channel, or
 - generate common mode fluctuations ⇒ all channels 'jump' or drift;
- resulting from temperature drifts, light penetration, cross-talks, etc.

digitization

additional effect of binning (quantization) affects resolution (it adds noise) of amplitude measurement

use of **triangular** shaping is arbitrary

for practical reasons, width of noise envelope $= 6 \times \sigma$ (Gaussian distribution) 27

Meas. - 3

more segmentation seems to be better but ... initial charge Q is shared among neighbors

[•] Steeper slope → larger bandwidth, so noise need to be watched too:

National Laboratory

Meas. - 6

ToA measurement is not easy, and it requires:

- correction resulting from simultaneous
 amplitude measurement
- insensitive measurement to amplitude

amp

t

large **s**ignal

overdrive may lead to additional errors, and may not be correctable (overdrive insensitive discriminators)

Precision of ToA measurement is affected by errors:

- indeterministic (stochastic), depending on noise contained in signal ⇒ S/N and slope of a pulse (α_f·τ_p)
- and deterministic:
- \Rightarrow time-walk σ_{TW}
- \Rightarrow discriminator overdrive σ_{DISC}

composition of events:

photoelectric effect vs. linear energy transfer

how liberated charge is collected

• drift in E field;

Brookhaven

National Laboratory

diffusion

- Ex. In Belle II (SuperKEKB e⁺e⁻):
- pulse shape analysis is used to distinguish electromagnetically and hadronically interacting particles within CsI(TI) electromagnetic calorimeter;
- pulse shapes from particle-dependent scintillation response are analyzed with multi-template offline fit to measure fraction of scintillation emission produced by hadrons;
- · particularly attractive are Artificial Neuron Network (ANN) techniques.

Meas. - 10

from simple diffraction imaging to imaging using synchrotron radiation

Meas. - 11

Useful Literature Items

- International Atomic Energy Agency:
- "Selected Topics in Nuclear Electronics", IAEA-TECDOC-363, Vienna 1986
- "Nuclear Electronics Laboratory Manual", IAEA-TECDOC-530, Vienna 1989
- V. Radeka, "Optimum Signal-Processing for Pulse-Amplitude Spectrometry in the Presence of High-Rate Effects and Noise, in IEEE Transactions on Nuclear Science, vol. 15, no. 3, pp. 455-470, June 1968
- V. Radeka, "State of the Art of Low Noise amplifiers for Semiconductor Radiation Detectors", BNL-222986-2022-COPA, 1968
- E. Nygard, et al. "CMOS Low Noise Amplifier for Microstrip Readout Design and Results" CERN-PPE/90-142, 1990

old but spring-like

W.E. Cleland, E.G. Stern, "Signal Processing considerations for Liquid Ionization Calorimeters in a High-Rate Environment, Nucl. Instr. and Meth. A 338 (1994)
V. Radeka, "Signal Processing for Particle Detectors" In: Fabjan, C., Schopper, H. (eds) Particle Physics Reference Library. Springer, Cham. 2020
A. Rivetti, "MOS: Front-End Electronics for Radiation Sensors (Devices, Circuits, and Systems)" CRC Press 2015

Summary

Application Specific Integrated Circuits with sensors form semiconductor eyes to detect radiation

application
They allow measurements of numerous features of incident radiation:
Impact position (direction)
Energy and type
Intensity
Time of arrival
Spatiotemporal correlations, etc.

- Etc.

Readout ASICs are large scale, mixed-mode... data generating circuits machines, designed with CAD/EDA tools

- R&D
 AI/ML processing reducing raw data and extracting higher-order information
 3D-Integration for increased granularity and more transistors/channel

Careful optimization of Front-End amplification stages is needed to perform measurements accurately and allow further processing in digital

