
Design of Efficient and Privacy Preserving
Machine Learning

Assistant Professor
Department of Computer Science & Engineering

University of Connecticut
Email: caiwen.ding@uconn.edu

https://caiwending.cse.uconn.edu/

Dr. Caiwen Ding

mailto:caiwen.ding@uconn.edu
https://caiwending.cse.uconn.edu/

Machine Learning is Everywhere

Source: DeepMindImage credits
to Brother UK.

https://gfycat.com/gifs/tag/object+d
etection

2

Image credits to Hikuwai et al

https://www.flickr.com/photos/brother-uk/
https://sciprofiles.com/profile/2614537

3

Machine Learning is Expensive

4

175B

70B
540B

175B

176B

65B

340M

340M
1.5B

137B

175B

1T

Yang, Jingfeng, et al. "Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond."

Language Models are Much Bigger (Billions of Parameters)

Challenges: Model Storage

• Large model sizes store large-scale, multi-
modal deep learning systems.

Challenges: Computation
Ø Increase computations, therefore increase training time.
Ø Increases throughput/latency

• Frame rate, delay

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition."
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.

5

Slide courtesy: V. Sze, et.al., “Hardware for Machine Learning: Challenges and Opportunities”, CICC’ 17

Processing Engine

Von Neumann architecture

Challenges: Energy

Machine Learning Challenges

Challenges with Large and Sparse Graph Input

• Example: 492 million nodes, 6.8 billion edges in
Alibaba’s AliGraph

• Problem: Increasing computational and memory cost,
need for more high-end servers with expensive GPUs,
increased training and inference time...

Growing massive real-world graphs = Larger GNNs

6

Machine Learning as a Service (MLaaS)

Qayyum et al. "Securing machine learning in the cloud: A systematic review of cloud machine learning
security." Frontiers in big Data 3 (2020): 587139.

7

● Data are distributed across devices
● Decentralized collaborative machine learning
● Prevent direct access to private data

Gradient Attack on Federated Learning1,2, 3, 4

[1] J. Deng et al. EMNLP 2021
[2] W. Wei et al. ESORICS 2020
[3] L. Zhu et al. NeurIPS 2019
[4] Y. Wang et al. IJCNN 2022

adversary1

More Challenges with Privacy Leakage

MLaaS (sensitive data such as medical and billing info).

8

GPU FPGA

Research Overview

Mobile Device

Source: Xu et al, HPCA 2015

ReRAMHardware

Efficient Computing for ML system [Training and Inference]
Hardware-aware pruning (SC-21, EMNLP-20, DAC-21,
ISLPED-20, IJCAI-21, ACL-22)
Knowledge Distillation (ACL-22, IJCAI-23)
Fine-tuning free (IJCAI-21)
Quantization (SC-23)
Sparse training (ICCD-22, DAC-23)
GPU kernel design (ICCAD-23)
Run-time reconfigurable Inference (ICCAD-22, DAC-21, DATE-
22, DAC-22)
Platform (ReRAM, FPGA) (ISCA-21, DATE-21 (BPN), DAC-20)
Optical Neural Network (DAC-23)

Efficient Computing for privacy preserving
protocols

Gradient attack (EMNLP-21, IJCNN-22)
Membership Inference Attack (IJCAI-21)
Secure federated learning (EMNLP-21
(Oral), Oakland-23)
FHE-based PPML (ICML-23)
MPC-based PPML
MPC-based PPML (DAC-23, MICRO-
23, ICCV-23)

9

Energy Harvesting
devices

Optics

…

Algorithm

System

Technology

Algorithm

System

Images HPC climate Material science economy

Co-PI, GNN-based Hardware Trojan Detection for Large Complex Third-Party Ips, NSF IUCRC CHEST

PI, Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a
Service: From Algorithm to Hardware, NSF

PI, Exploring Extreme Sparsity for GNNs to Achieve High Energy Efficiency in Large Core-Count Machines

PI, Evaluating the Impact of Preferential Trade Agreements on Agricultural and Food Trade: New Insights from Natural
Language Processing and Machine Learning, USDA NIFA

PI, Feasibility of Transformer-based Code Migration for HPC, DOE/LLNL

PI, CLIMB: Connecticut’s Low-carbon, Innovative, and Modernized electric grid for Better resilience

Co-PI, Change and Damage Detection from Aerial Images

Co-PI, Creating Insurance-Specific Transformers for Representation Learning from Large-scale Unstructured
Claim Text, Travelers

PI, Optigrid: Planning & Optimizing the Power Grid During the Low Carbon Transition in Connecticut

Co-PI, Developing a food image recognition technique to evaluate the nutrition information of restaurant foods
and community food environment, USDA NIFA Hatch

Major Sponsors

Outstanding Student Paper Award @ 2023 HPEC. Bin Lei, Caiwen Ding (UConn), Le Chen, Pei-
Hung Lin, Chunhua Liao (LLNL). Creating a Dataset for High-Performance Computing Code
Translation using LLMs: A Bridge Between OpenMP Fortran and C++.

Irregular

0 0 6 0
0 7 0 2
0 8 0 0
5 2 0 0

Row

4 3 6 9
0 0 0 0
4 8 3 2
0 0 0 0

Column pruning

4 0 6 0
8 0 6 0
4 0 3 0
5 0 4 0

Tensor-tile
Pruning

0 0 6 9
0 0 6 2
4 8 0 0
5 2 0 0

11

Sparsity (e.g., pruning) makes the machine
learning model small & fast

Sparse

0 0 6 0
0 7 0 2
0 8 0 0
5 2 0 0

Dense

4 3 6 9
8 7 6 2
4 8 3 2
5 2 4 9

Pruning

`

Pruning 0

Or the combinations

Sparsity types

FORMS: Fine-grained Polarized ReRAM-based In-situ

Computation for Mixed-signal DNN Accelerator
Geng Yuan, Payman Behnam, Zhengang Li, Ali Shafiee, Xiaolong Ma, Hang Liu,
Xuehai Qian, Mahdi Bojnordi, Yanzhi Wang, Caiwen Ding

(ISCA'21) The 48th International Symposium on Computer Architecture, 2021

12

Challenges

• Mapping signed weights
• Decompose crossbars to positive and a negative ones (PRIME [1])

• Significant crossbar overhead
• Add an offset to the original negative weight values (ISAAC [2])

• A bias must be subtracted from the results.
• Count all 1s in MSB position (negative values) for all inputs and perform subtractions for each

of 1s.
• Peripheral circuit overhead

• Software optimization agnostic (mapping, pruning, quantization)
• Not explore intrinsic sparsity of current DNNs

• Hardware managed with remarkable overheads such as row indexing, routing
controls, word-line controls, etc. (ReCom: DATE’18, SRE: ISCA’19)

• highly model-dependent: (SNRram: DAC’18)

FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

13
[1] PRIME, Chi et al. 2016 ISCA

[2] ISAAC, Shafiee et al. 2016 ISCA

• Our solution: FORMS -- algorithm/hardware co-design
FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

• Weights in a fragment are polarized with the same sign.
– Either positive or negative.
– Sign bit saving.

• New Challenges:
– How to determine the sign of weights in a fragment
– The mapping policy of weights to sub-array columns

14

• Two types of structured pruning methods
– Filter pruning
– Filter-shape pruning

ADMM-Regularized Optimization
• To achieve optimized weight pruning, polarization, and quantization, FORMS utilizes Alternating Direction Method

of Multipliers (ADMM) into the training process.
• ADMM regularization can reforge and separate the problem, then solve them iteratively.

Pi={the weights on each fragment(a column of a
crossbar sub-array)

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends in Machine Learning 3(1) (2011) 1–122

FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

15

Formulation:

ADMM formulation

The original compression
problem is not differentiable,
thus
not applicable through
backpropagation

Augmented Lagrangian of ADMM formulation
Solving 2 sub-problems iteratively

Stochastic Gradient Decent.

Euclidean projection:

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning 3(1) (2011) 1–122

Fragment size
• There is no accuracy drop with appropriate

fragment size (e.g., 8, 16).
• Minor accuracy drop when fragment size is

32.

FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

16

Zero-
skipping
Logic

• Larger fragments (e.g., ISAAC) have a higher probability to contain at least one input that its significant
bits are not zero.

• Zero-skipping logic with negligible overhead in corporation with small fragment size can catch the
intrinsic sparsity of DNN models.

• Zero skipping saves requited feeding input cycles.
• Average effective input cycles for various fragment sizes of different layers of ResNet50 (CIFAR100).

FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

17

• Training: 8× NVIDIA Quadro RTX 6000 GPU by
PyTorch API

• Data Sets: MNIST, CIFAR10, CIFAR100, ImageNet

• DNN Models: LeNet5, VGG16, ResNet18, ResNet50

• Software Baselines:
• NeurIPS’15, ICCV’17, DAC’17, ECCV’18, NeurIPS’18,

CVPR’19, ASPDAC’20

• Design Space Exploration: In-house tool while its
back-end utilizes unified CACTI 7.0, NVSIM, and
NVSIM-CAM, with multi-banking support

• Hardware Simulator: In-house tool while SW
results are back annotated

• Hardware Baselines:
• Digital: DaDianNao, TPU, WAX, SIMBA
• Mixed-Signal: ISAAC, PUMA

CIFAR100: 53×, 73×, and 65× crossbar reduction on ResNet-18,
ResNet-50, and VGG-16, respectively.

ImageNet: higher crossbar reduction (13× and 16×) with higher or
similar accuracy when fragment size is 4 and 8.

[5]Y. He et al., FPGM, CVPR’19
[6] Z. Liu et al., NetworkSlim, ICCV’17
[7] Z. Zhuang et al., DCP, NeurIPS’18

[1]Y. Wang et al., Group scissor, DAC’17
[2] S. Han et al., IterativePrune, NeurIPS’15
[3] X. MA et al., TinyBytAcc, ASPDAC’20
[4] Y. He et al., AMC, ECCV’18
[8] S. Sayyaparaju et al., GLVLSI’17

FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

18

• Applying pruning and quantization will speed up
the frame processing rate of ISAAC by 160× and
200× for VGG16 and ResNet18.

• Applying pruning and quantization increases
FORMS speed up, up to 109× and155× when the
fragment sizes are 8 and16, respectively.

• By applying zero-skipping on top of model
optimizations, the speed-up of FORMS goes up
to 377× and 366× when fragment sizes are 8
and 16, respectively.

FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

19

Accel-GCN: High-Performance GPU Accelerator Design for Graph

Convolution Networks

20

Graph Datasets Features

Accel-GCN’s Benchmark Graph Datasets Details

Graph Name # Nodes #Edges Sparsity (%) Graph Name # Nodes #Edges Sparsity (%) Graph Name # Nodes #Edges Sparsity (%)

am 881,680 5,668,682 99.9993 amazon0601 403,394 5,478,357 99.9966 Artist 50,515 1,638,396 99.9358

Arxiv 169,343 1,166,243 99.9959 Citation 2,927,963 30,387,995 99.9996 Collab 235,868 2,358,104 99.9958

com-amazon 334,863 1,851,744 99.9983 OVCAR-8H 1,889,542 3,946,402 99.9999 PRODUCTS 2,449,029 123,718,280 99.9979

Pubmed 19,717 99,203 99.9745 PPA 576,289 42,463,862 99.9872 Reddit 232,965 114,615,891 99.7888

SW-620H 1,888,584 3,944,206 99.9999 TWITTER-
Partial

580,768 1,435,116 99.9996 wikikg2 2,500,604 16,109,182 99.9997

Yelp 716,847 13,954,819 99.9973 Yeast 1,710,902 3,636,546 99.9999 youtube 1,138,499 5,980,886 99.9995

• High Memory and Computation Costs:
• Large graphs demand substantial memory storage and computational resources
• Optimizing algorithms and utilizing parallel processing can help manage the increased overheads

• High Sparsity:
• The high sparsity; many nodes have few connections
• Techniques tailored for sparse graphs can be beneficial in this regard.

SPMM Background

• Row-wise SPMM is well-suited for GPUs for several reasons:
• Coalesced Memory Access
• Optimized Data Locality and Cache Usage
• Balanced Workload
• Streamlined Control Flow

• Basic SPMM approaches[1]:

[1] Srivastava, N., Jin, H., Liu, J., Albonesi, D., and Zhang, Z. (2020). "Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise product,“ 2020 MICRO.

State of the Arts

• PyTorch-Geometric (PyG)[1] utilizes the torch-scatter library, which is built on CUDA, to perform graph
aggregation operations central to its function. This library aids in the support of node embedding propagation,
following the essential principles of graph-processing systems.

• Deep Graph Library (DGL)[2] incorporates a ready-to-use Sparse-Matrix Multiplication (SpMM) solution,
specifically utilizing the functionalities in cuSPARSE, for straightforward sum-reduced aggregation.
Furthermore, it leverages its own CUDA kernel for the implementation of more sophisticated aggregation
schemes that factor in edge attributes.

• GNNAdvisor[3] is an adaptive and efficient runtime system developed to address the limitations of existing
Graph Neural Networks (GNNs) frameworks. It is designed to foster the acceleration of various GNN
workloads on GPU platforms through several strategic interventions, such as performance-relevant features
identification, workload management, GPU memory hierarchy utilization and lightweight analytical model.

• CuSPARSE[4] is a library in NVIDIA's CUDA toolkit, facilitating optimized sparse matrix operations through
GPU-acceleration. It is essential in high-performance computing applications, helping developers manage
sparse matrices more efficiently in CUDA-accelerated environments.

[1] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds (ICLR), 2019.
[2] MinjieWang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and
Zheng Zhang. Deep graph library: Towards efficient and scalable deep learning on graphs. ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.
[3] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei Ding. Gnnadvisor: An efficient runtime system for gnn acceleration on gpus. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI’21), 2021.
[4] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi. Cusparse library. GPU Technology Conference (GTC), 2010.

Research Gaps
• Limitations:

• Both PyG and DGL face low scalability when dealing with large sparse graphs with high-dimensional
node embeddings.

• PyG: due to high-overhead atomic operations.
• DGL: despite utilizing SpMM strategies and its CUDA kernel for more complex aggregations.

• GNNAdvisor leverages Non-zero groups (NG) to improve workload mapping.
• Warp-level workload imbalance and resource underutilization when dealing with graphs exhibiting power-law non-zero

distribution.

• CuSPARSE is a popular baseline for SpMM kernels, but restricts further insight due to its closed-source
nature.

• Hilight of our Accel-GCN design:
• Lightweight degree sorting stage to group nodes with similar degreeBlock-level partition.
• Block-level partition strategy that dynamically adjusts warp workload sizes, enhancing shared memory

locality and workload balance, and reducing metadata overhead.
• Combined warp strategy that improves memory coalescing and computational parallelism in the column

dimension of dense matrices.

↑
6
↓

↑
6
↓

↑
4
↓

↑
4
↓

↑
4
↓

3 3 3 3

2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1

Deg

1

32

64

96

128

192

384

Partition Pattern

Workloads Size = 𝑑𝑒𝑔

Workloads Size = !"#
$

Workloads Size = !"#
%

Workloads Size = !"#
&

Workloads Size = !"#
'

Workloads Size = !"#
($

×
⊕

Row-Wise Product Based SpMM

One non-zero multiplies with one right-hand row

×Workload unit:

Deg

1
2
3
2
5
1
1
2

↑

12

↓

0 … 31

Workloads Size = 32⋯>384

Max warps per block = 12
Max workloads per warp = 32
Deg bound = 12 × 32 = 384

row1
row2

row3
row4
row5

row6
row7

row8

row1

row2

row3

row4

row8
row6

row7

row5
row group1

row group2

row group3

row group4

degree
sorting

row
grouping

Statistic for Reddit

Deg
Interval

#Rows

[1,32] 33168

(32,64] 20040

(64,96] 16458

(96,128] 13824

(128,192] 22196

(192,384] 42720

(384,∞) 84559

Degree Sorting and Block-level Partition

=

WP-2 WP-3 WP-4WP-1
0

1
435

26
7

(b) Warp-level partition
Original Nodes

Neighbors

Warp
Partitions (WP)

Partition Metadata (int4 128bits)

Allocated memory

0 1 2

1 6 0 2 4 7 1 3

WP-2

WP-1 row=0 col=0

row=1 col=0

WP-4

WP-3 row=1 col=2

row=2 col=0

siz=2

siz=2

siz=2

siz=2

pad

pad

pad

pad

(a)
Graph

…

…

BP-1 BP-2

Warp 2

Warp 1

0

1 6

2 1

0 2 4 71 3

0 1 2 Degree
Sorting

BP-1 deg=2 row=0loc=0 info=2|2

…

…
(c) Block-level partitionOriginal Nodes

Reordered Nodes

Neighbors

Block level
Partitions (BP)

BP-2 deg=4 row=2loc=4 info=2|1

row=0 col=0 siz=2

row=1 col=2 siz=2

Partition Metadata (int4)

Allocated memory

Warp 4

Warp 3 row=2 col=0 siz=2

row=2 col=2 siz=2

…

…

Memory Allocation Reduction: 50%

0 1 2 3 4 5 6 7
0 0 1 0 0 0 0 1 0
1 1 0 1 0 1 0 0 1
2 0 1 0 1 0 0 0 0
3 0 0 1 0 0 1 0 0
4 0 1 0 0 0 0 0 0
5 0 0 0 1 0 0 0 0
6 1 0 0 0 0 0 0 0
7 0 1 0 0 0 0 0 0

Nod
es

Adjacency Matrix

← 𝑤1 → ← 𝑤2 →
row1

row2

row3

row4

row8

row6

← 𝑤3 → ← 𝑤4 →

← 𝑤6 → ← 𝑤7 →

← 𝑤9 →

← 𝑤19 → ← 𝑤20 →

← 𝑤13 → ← 𝑤14 → ← 𝑤15 →

← 𝑤16 → ← 𝑤17 →

← 𝑤11 →

row7

row5

← 𝑤5 →

← 𝑤8 →

← 𝑤10 →

← 𝑤21 →

← 𝑤18 →

← 𝑤12 →

block1

block2

block3

block4

block1

block2

block3

block4

Sparse matrix with CSR format

GNNAdvisor:
fixed neighbor group (or workload)
size

Ours: dynamic workload size

Workload size = avg deg

↑
3
↓

↑
3
↓

↑
2
↓

↑
2
↓

↑
2
↓

Deg
4

8

12

Partition Pattern

Workloads Size = !"#
$

Workloads Size = !"#
%

Example for
Max warps per block = 6
Max workloads per warp = 4

Deg

6

6

6

9

9

11

11

12

Workload size = 2

decodedecode

Block-level partition meta-data

Memory requirement

Decoding procedure
𝑏𝑙𝑜𝑐𝑘_𝑟𝑜𝑤𝑠 = +𝑙𝑜𝑤𝑒𝑟	16𝑏𝑖𝑡𝑠	𝑜𝑓	𝑖𝑛𝑓𝑜, 𝑑𝑒𝑔 ≤ deg _𝑏𝑜𝑢𝑛𝑑

1, 	 𝑒𝑙𝑠𝑒

𝑤𝑎𝑟𝑝_𝑛𝑧𝑠 = +ℎ𝑖𝑔ℎ𝑒𝑟	16𝑏𝑖𝑡𝑠	𝑜𝑓	𝑖𝑛𝑓𝑜, 𝑑𝑒𝑔 ≤ deg _𝑏𝑜𝑢𝑛𝑑
𝑚𝑎𝑥𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑠	𝑝𝑒𝑟	𝑤𝑎𝑟𝑝 , 	 𝑒𝑙𝑠𝑒

𝑟𝑜𝑤_𝑛𝑧𝑠 = +𝑑𝑒𝑔, 	 𝑑𝑒𝑔 ≤ deg _𝑏𝑜𝑢𝑛𝑑
𝑖𝑛𝑓𝑜, 	 𝑒𝑙𝑠𝑒

𝑤𝑎𝑟𝑝𝑠_𝑝𝑒𝑟_𝑟𝑜𝑤 =
𝑟𝑜𝑤_𝑛𝑧𝑠
𝑤𝑎𝑟𝑝_𝑛𝑧𝑠

𝑟𝑜𝑤 =
𝑤𝑎𝑟𝑝_𝑖𝑑

𝑤𝑎𝑟𝑝𝑠_𝑝𝑒𝑟_𝑟𝑜𝑤
𝑐𝑜𝑙 = (𝑤𝑎𝑟𝑝_𝑖𝑑	𝑚𝑜𝑑	𝑤𝑎𝑟𝑝𝑠_𝑝𝑒𝑟_𝑟𝑜𝑤) 	 D 𝑤𝑎𝑟𝑝_𝑛𝑧𝑠

𝑚𝑒𝑚𝑜𝑟𝑦	𝑓𝑜𝑟	𝐵𝑃 ≈
𝑚𝑒𝑚𝑜𝑟𝑦	𝑓𝑜𝑟	𝑊𝑃

𝑎𝑣𝑔.𝑤𝑎𝑟𝑝𝑠	𝑝𝑒𝑟	𝑏𝑙𝑜𝑐𝑘

Meta-data

Fixed NG (workload) Size
(imbalanced workload within blocks)

Block-level Partition (ours)
(balanced workload within blocks)

← 𝑤1 → ← 𝑤2 →
row1

row2

row3

row4

row8

row6

← 𝑤3 → ← 𝑤4 →

← 𝑤6 → ← 𝑤7 →

← 𝑤9 →

← 𝑤19 → ← 𝑤20 →

← 𝑤13 → ← 𝑤14 → ← 𝑤15 →

← 𝑤16 → ← 𝑤17 →

← 𝑤11 →

row7

row5

← 𝑤5 →

← 𝑤8 →

← 𝑤10 →

← 𝑤21 →

← 𝑤18 →

← 𝑤12 →

block1

block2

block3

block4
Sparse matrix with CSR format

Workload size = avg deg

block1

block2

block3

block4

6

6

6

9

9

11

11

12

(a) warp-level
workload partition

← 𝑤1 → ← 𝑤2 →
row1

row2

row3

row4

row8

row6 (b) block-level
workload partition

← 𝑤3 → ← 𝑤4 →

← 𝑤6 → ← 𝑤7 →

← 𝑤9 →

← 𝑤19 → ← 𝑤20 →

← 𝑤13 → ← 𝑤14 → ← 𝑤15 →

← 𝑤16 → ← 𝑤17 →

← 𝑤11 →

row7

row5

← 𝑤5 →

← 𝑤8 →

← 𝑤10 →

← 𝑤21 →

← 𝑤18 →

← 𝑤12 →

block1

block2

block3

block4

block1

block2

block3

block4

Sparse matrix with CSR format

×

← 𝑐𝑜𝑙	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 →
← 32 → ← 32 → ← 32 →

nz1

×nz2

×nz3

×nz4

×nz5

×nz6

×nz7

×nz8

×nz9

×nz10

×nz11

×nz12

×nz13

×nz14

×nz15

×nz16

×nz17

Workload for block 2

Right Matrix

w7

w8

w9

w10

w11

w12

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

Block partition workload
(column dimension = 96)

Workload size = avg deg

Deg

6

6

6

9

9

11

11

12

Warp-level partition workload
(column dimension = 96)

𝑤7 𝑤8 𝑤9 𝑤10 𝑤11 𝑤12

×

← 𝑐𝑜𝑙	𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 →
← 32 → ← 32 → ← 32 →

nz1

×nz2

×nz3

×nz4

×nz5

×nz6

×nz7

×nz8

×nz9

×nz10

×nz11

×nz12

×nz13

×nz14

×nz15

×nz16

×nz17

Workload for block 2

Right Matrix

cw1

cw2

cw1

nz18 ×

cw2

cw1

cw2

w1

w1

w2

w2

w3

w3

w4

w4

w4

w5

w5

w5

w6

w6

w6

w1 w2 w3

w4 w5 w6

w1

w1

w1

w2

w2

w2

w3

w3

w3

w4

w4

w4

w5

w5

w5

w6

w6

w6

w1 w2 w3

w1

w1

w2

w2

w3

w3

w4

w4

w5

w5

w6

w6

Single warp looping manner

Combined Warp Strategy Combined warp manner

Combined warp manner:
round_dim = ((dim + 31) / 32) * 32;
for i = 1, … , dim / 32 :
 form combined warps consist of round_dim threads;
 for each combined warp:
 for all nzs handled by this combined warp in i-th interval :
 get the location of the workload;
 execute the workload with parallelism of round_dim;
 …
 …

Single warp looping manner:
for each warp:
 for all nzs handled by this warp:
 get the location of the workload;
 for j = 1, … , dim / 32:
 execute the workload with parallelism of 32;
 …
 …

Single Warp Looping Manner
(less parallelism in execution)

Combined Warp Manner (ours)
(improved parallelism in execution)

Overall Performance

• Average improvement of 1.17× over cuSPARSE; up to 1.45× improvement.
• More improvement than GNNAdvisor and graph-BLAST across all benchmark graphs,

• Average speedup of 1.86× and 2.94×, and a maximum speedup of 3.41× and 5.02×, respectively.

Kernel Execution Time vs. Column Dimension

• A gradual and smooth l increase in runtime as the column dimension increases.
• Benefiting from memory coalescing and automatic alignment of intermediate results proffered by the combined

warp strategy.

Block-level Partition vs. Warp-level Partition

• Block-level partition has realized an
average speedup ranging from
1.05× to 1.07× across disparate
column dimension intervals,
culminating in a peak improvement
of 1.31×; and a least effective case
of 0.92×.

Profiling results on 18 graphs; each with 18 dimensions; total 2016 graph tests.

Combined Warp vs. Single warp looping

• Combined warp strategy leads to
performance improvement specifically
within the column dimension intervals
[0, 32], [32, 64], and [96, 128], with an
average speed gain recorded between
1.23× and 1.33×.

• This enhancement is somewhat
diminished within the column
dimension range [64, 96], a divergence
potentially ascribable to unaligned
cache line size in the prevailing GPU
architecture.

Open sourced at: https://github.com/xiexi1990/ICCAD-Accel-GCN in mid August 2023, +14 stars

https://github.com/xiexi1990/ICCAD-Accel-GCN

Dynamic Sparse Training via Balancing the

Exploration-Exploitation Trade-off

34

35

Comparison of different sparsification methods

Sparse Training

Weight pruning vs. sparse training

Weight pruning: ADMM [1], Lottery Ticket Hypothesis (LTH) [2];
Ø Training is NOT efficient; Efficient Inference.
Sparse training: SET[3], RigL[4], GraSP[5], DeepR[6], DSR[7];
Ø both efficient training and inference
Ø Sparsity is introduced from the beginning of training à less memory footprint due to a

smaller number of parameters
Ø Can achieve same accuracy compared to dense training using same training epochs

[1] Zhang, Tianyun, et al. “A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers.” ECCV (2018).
[2] Jonathan F., and Carbin M., "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks." ICLR, 2019
[3] Mocanu, D., et al., "Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science." Nature communications 9.1 (2018): 2383.
[4] Evci, U., et al., "Rigging the lottery: Making all tickets winners." ICML. PMLR, 2020.
[5] Wang, C., et al., "Picking Winning Tickets Before Training by Preserving Gradient Flow." ICLR, 2019.
[6] Bellec, G., et al., Deep rewiring: Training very sparse deep networks. ICLR, 2018.
[7] Mostafa H. and Wang X., Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization. ICML, 2019.

Train-
prune-
retrain

Iterative
pruning

Sparse
training

Sparsity Low Medium High

Accuracy Low Medium High

Training
cost High Medium Low

Weight pruning
• One of the most common model compression methods.

• Many works: ADMM [1], AMC [2], GSM [3], LTH...

• Use Surrogate Lagrangian Relaxation (SLR)-based pruning as an example[4] (our work).

Faster convergence than ADMM

Better accuracy

(Image Classification)

[1] Li, Zhe, et al. "E-RNN: Design optimization for efficient recurrent neural networks in FPGAs." In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp.
69-80. IEEE, 2019. (our work).
[2] He, Yihui, et al. “AMC: AutoML for Model Compression and Acceleration on Mobile Devices.” ECCV (2018).
[3] Ding, Xiaohan, et al. “Global Sparse Momentum SGD for Pruning Very Deep Neural Networks.” NeurIPS (2019).
[4] Gurevin, Deniz, et al. “Enabling Retrain-free Deep Neural Network Pruning Using Surrogate Lagrangian Relaxation.” IJCAI (2021). (our work).

SRC Select Disclosure 36

37

State-of-the-arts on sparse training

Step 1: Randomly initialize weight tensor with a fixed sparsity.

Step 2: Train the sparsified weight for ∆T -1 epochs, where ∆T is the drop-grow frequency.

Step 3: During forward propagation, drop k weights with the least absolute magnitude (k=2 in the example).

Step 4: During backpropagation, grow the weights with the highest k absolute gradients back to non-zero.

Repeat steps 2-4 till the end of the training.

Evci, Utku, et al "Rigging the lottery: Making all tickets winners." ICML, 2020.

38

• Random-based grow methods (SET, ITOP [1]): lower accuracy

Motivation

How to achieve Extreme Sparsity?

• Greedy-based grow methods (e.g., RigL, ITOP [1],
GraSP, DeepR, DSR;): search for sparse masks
with a local minimal -> limited weights coverage->
limited accuracy or sparsity

Highlight of our solution

[1] Liu, Shiwei, et al. "Do we actually need dense over-parameterization? in-time over-parameterization in sparse training.” ICML, 2021.

39Dynamic Sparsity Training via Balancing the Exploration-Exploitation Trade-off (DST-EE) (ours)

Our solution – Balancing the Exploration-
Exploitation Trade-off

𝑖: Layer number
𝑡: Training iteration
 : Input training data
S"#:	Importance score tensor in 𝑞 − 𝑡ℎ mask update round

 : absolute gradient tensor of 𝑖 − 𝑡ℎ layer at 𝑡 − 𝑡ℎ
iteration
N"#:	Counter tensor that collects the activated frequency for each
weight element

How to achieve Extreme Sparsity?

Initialization

Example:	𝑆!!"""= 16.9 = 	3.1 + 2𝑒(−5)× #$!"""
"%!&'(

Exploitation
(magnitude)

Exploration
(prefer unexplored regions)

Convolutional neural network (CNN)

GNN link prediction

wiki-talk

ia-email

Extreme Sparsity

40

Efficient DONN
• Challenges posed by high computation and memory storage of CMOS-based DNN systems.
• Diffractive optical neural networks (DONNs) as an ultra-efficient DNN accelerator

• Mismatch between numerical modeling and physical deployment of current DONN systems

(b) Train Baseline Model (c) Train Sparse Model with Roughness and Smoothness

3D printed rough (dense) layer

3D printed smoothed layer

(a)

Z

X

0

2!

Phase

Input Plane

Secondary Waves

LnL3 Output Plane (Detector)

…

…

Diffractive Layers

Backpropagation

C
oh

er
en

t L
ig

ht

(L
as

er
 S

ou
rc

e)

L2L1

X

Z

Sparse and Smooth Diffractive Layers
Detector Array

Input Plane
0

1

2

3

4

5

9

8 6

Dense Diffractive Layers
Detector Array

0

1

2

3

4

5

9

8 6

X

Z

Input Plane

3D printed DONN

(d)

Sparsification

Roughness
Smoothness

2! Optimization

oPhysics-aware roughness
optimization process for
DONN system
oImproves accuracy

awareness, reduces
interpixel crosstalk impacts

oThree steps: roughness
regularization, block
sparsification, 2π periodic
phase modulation

[23’DAC] Shanglin Zhou*, Yingjie Li*, Minhan Lou, Weilu Gao, Zhijie Shi, Cunxi Yu, Caiwen Ding, Physics-aware Roughness Optimization for Diffractive Optical Neural Networks, In Proceedings of ACM/EDAC/IEEE
Design Automation Conference (DAC).

• Ours-A: roughness-
aware trained model

• Ours-B: the model
trained with sparsity

• Ours-C: the model
trained with sparsity
and roughness

• Ours-D: the model
trained with sparsity,
plus roughness and
intra-block smoothness

Efficient DONN

Baseline Sparsify Sparsify + Roughness Intra-block Smooth 2! Optimization Smoothed Layer

Fig: Comparison of the phase mask of the second diffractive layer under EMNIST dataset. Black blocks mean weights inside are sparsified
and set to zero. The fifth is 2π optimization of phase mask that trained with sparsification, roughness and intra-block smoothness. The last
is 3D printed smoothed diffractive layer.

PASNet: Polynomial Architecture Search
Framework for Two-party Computation-based

Secure Neural Network Deployment

43

• HE applies operations on ciphertext while the result still can be recovered to plaintext;
• TEE constructs an environment that allow content inside works with confidentiality and integrity;
• MPC manages sensitive operations and communications on multiple parties while maintaining the

security among each party

Trusted Execution
Environment (TEE)

44

[15] Cryptonets [18] Cryptodl
[16] Mlcapsule [43] Visor [53] Slalom
[27] Mp-spdz [32] Cryptflow [44] Cryptflow2

Background

(HE) (MPC)

Hardware Solution – GPU vs. CPU

45

MPC: CryptGPU [2]
Ø achieves takes ~2s (VGG-16, CIFAR10) on Tesla V100

GPU with 16 GB memory
Ø 2.3× faster than the CRYPTFLOW [3] (CPU). (ResNet-

152, ImageNet)
Ø Two CryptGPU with power budget of 315 × 2 Watt
Ø Still expensive for non-linear operators such as ReLU

[1] Dathathri et al, 2019 ASPLOS.
[2] Tan et al, 2021 Oakland
[3] Kumar et al, 2020 Oakland

HE:
Ø High cost multiplicative gates for DNN inference.
Ø >100s per image for a 10-layer SqueezeNet on

CIFAR10 [1]. Intel Xeon E5- 2667v3@3.2GHz with 224
GB of memory

FPGA advantages:
Power efficiency: computational efficient compared to CPUs
and GPUs
Design flexibility: Rich reconfigurable gate-level hardware
resources

Co
nv

Re
LU

Po
ol

m

Co
nv

Re
LU

Enc. comm.

Co
nv

Re
LU

Po
ol

m

Co
nv

Re
LU

Model
vendor

Client

Enc. Computation

Hardware acc.

Result

Model

Input

Enc. Computation

Hardware acc.

Secure Machine-Learning-As-A-Service
(MLaaS), MPC setting

FPGA-based Privacy-Preserving Machine Learning (ongoing)

Privacy Preserving Machine Learning - Research Gap

A generic framework that combines the aforementioned FPGA
advantages when both DNN inference and MPC are required,
has not yet been widely investigated.

(1) ultra-high computation and communication overhead;
Ø vast amount of data communication between the

edge devices and cloud,
Ø limited resources (e.g., memory size) on the edge

(2) Adding cryptographic operations introduces more
overhead.

46

Lantecy breakdown under 2PC PI setup. Network
banwidth: 1 GB/s. Device: ZCU104. ResNet50 on ImageNet

v ReLU operator has much longer latency than Conv
v Hardware & software techniques are required for secure

privarate inference (PI) acceleration.

Background: MPC Basics
An example of 4-bit plaintext vs. ciphertext evaluation.

Sum

Result

r

m

Plaintext Evaluation, user
query revealed to vendor

×

Model:W

User Query:IN

>0?

Result

Not safe!

Model vendor

Client
in0

in1

w0

w1

A0

A1

B0

B1

Z0

Z1

E

F

r0

m0

sum

2PC-Matmul

2PC
-O

T

Result

Model:W

User Query:IN

r1

m1

sum

Safe!

Model vendor

Client

Ciphertext Evaluation, protection for both
user query & vendor’s modelv2PC-Oblivious Transfer (OT) --

foundation of secure
comparison (ReLU)

vMultiple rounds of
communication

vReducing ReLU is essential

2PC-OT Processing Flow:

47

Crypto-Friendly Neural Architecture Co-search

48

v The search algorithm uses
hardware latency modeling as
input for loss function

v Trainable X2act Non-linear
Function

v Operator Modeling and Latency
Analysis

2PC-MaxPool Operator

2PC-X2act Operator

2PC-AvgPool Operator

2PC-Conv Operator

Results

PASNet on CIFAR-10 under 2PC PI setup. Network banwidth: 1 GB/s. Device: ZCU104.

Accuracy-ReLU count trade-off on CIFAR-10. ReLU reduction comparison with SOTA works on CIFAR-10.
49

PASNet evaluation & cross-work comparison with CryptGPU and CryptFLOW. Batch size = 1,
Network bandwidth: 1 GB/s. Device: ZCU104.

CryptGPU: Tan et al, 2021 Oakland
CryptFLOW: Kumar et al, 2020 Oakland

Results

50

Acknowledgement: Team Members

51

Ph.D. Students

Master Students

Bingbing Li Shanglin Zhou Shaoyi Huang Hongwu Peng Amit Hasan

Kiran Thorat Bin LeiJiahui Zhao

Ya-Sine Agrignan

Xi Xie Yuebo Luo Nicole Meng

Ronuk Sahu

https://caiwending.cse.uconn.edu/person/bingbing-li/
https://caiwending.cse.uconn.edu/person/shanglin-zhou/
https://caiwending.cse.uconn.edu/person/shaoyi-huang/
https://caiwending.cse.uconn.edu/person/hongwu-peng/
https://caiwending.cse.uconn.edu/person/amit-hasan/
https://caiwending.cse.uconn.edu/person/kiran-gautam-thorat/
https://caiwending.cse.uconn.edu/person/bin-lei/
https://caiwending.cse.uconn.edu/person/jiahui-zhao/
https://caiwending.cse.uconn.edu/person/ya-sine-agrignan/
https://caiwending.cse.uconn.edu/person/xi-xie/

Thank you!

caiwen.ding@uconn.edu
52

Acknowledgement

