Design of Efficient and Privacy Preserving
Machine Learning

Dr. Caiwen Ding

Assistant Professor
Department of Computer Science & Engineering
University of Connecticut

Email: caiwen.ding(@uconn.edu

https://caiwending.cse.uconn.edu/



mailto:caiwen.ding@uconn.edu
https://caiwending.cse.uconn.edu/

Machine Learning is Everywhere
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Tell me how ChatGPT works.

ChatGPT is a large language model that uses deep learning techniques to generate
human-like text. It is based on the GPT (Generative Pre-trained Transformer) architecture,
which uses a transformer neural network to process and generate text. The model is pre-
trained on a massive dataset of text, such as books, articles, and websites, so it can
understand the patterns and structure of natural language. When given a prompt or a
starting point, the model uses this pre-trained knowledge to generate text that continues
the given input in a coherent and natural way.

/ .
/ At the same timé ahe new main agent (in green) defeats the early rpain agent (in
\ . blue) byslperior economic play)and unit composition and control.

Image credits
to Brother UK.

Source: DeepMind
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Machine Learning is Expensive
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Language Models are Much Bigger (Billions of Parameters)
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Yang, Jingfeng, et al. "Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond."




Machine Learning Challenges

Challenges: Model Storage

« Large model sizes store large-scale, multi-
modal deep learning systems.

Challenges: Computation

» Increase computations, therefore increase tralnlng time.

» Increases throughput/latency
 Frame rate, delay

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition."
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.

Challenges: Energy

Processing Engine
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Slide courtesy: V. Sze, et.al., “Hardware for Machine Learning: Challenges and Opportunities”, CICC’ 17



Autonomous
Systems

Challenges with Large and Sparse Graph Input

Growing massive real-world graphs = Larger GNNs

Chemistry

<>
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8_®

Social Networks

Biology

Computer Vision

£2)

Traffic Forecasting

« Example: 492 million nodes, 6.8 billion edges Iin
Alibaba’s AliGraph

* Problem: Increasing computational and memory cost,
need for more high-end servers with expensive GPUs,
increased training and inference time...




Machine Learning as a Service (MLaaS)

Machine Learning Pipeline . : :
Global Machine learning as a Service Market

% Market forecast to grow at a CAGR of 31.6%
] ‘ e ; USD 36,204 Million
Collected Data a E a

Training data Validation data Test data

ML/DL Model

Cloud-Hosted ML Services/MLaaS USD 5,515 Million
Model training Model validation Final predictions
b e e Al Al s peen 2028
A® RESEARCH MARKETS
THE WORLD'S LARGEST MARKET RESEARCH STORE
e 0
Inventory and Insurance fraud Text or image Analysis of
supply chain detection and classification diseases and Training Deployment
optimization prevention illnesses API API
@ | £  ® | Q | |
VA = ij __________________________________ PRI, ——— \
Security and Analysis of risks Data mining Research and Users - I Users :
surveillance development Artificial Machine Deep : "
Intelligence Learning Learning | Trained :
D : l
1

Qayyum et al. "Securing machine learning in the cloud: A systematic review of cloud machine learning
security." Frontiers in big Data 3 (2020): 587139.



More Challenges with Privacy Leakage
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Attack Model
% F(X',W"

MLaaS (sensitive data such as medical and billing info).

TAG Adversary

Algorithm 1 TAG

1: Input: VW: ground truth gradient; F(X, W'): NLP
model; n: learning rate; W': parameter weights

2: Initial: X’ ~ N(0, 1), Y' ~ N (0, 1)

3: for the i-th iteration do

4:  VW; + (F(X',W')/OW') //get dummy gradi-

ent by TAG

D(VW,VW;)  «+

a(VW)||[VW; — VW]|

update (X', Y’):

X' X' _ dD(VW,VW;)

VX'’ ’
Y Y’ — OD(VW,VW))
end for

VY’
: Output: Recovered Data X*,Y "

et

IVW; — VW] +

SV X I D

[1] J. Deng et al. EMNLP 2021
[2] W. Wei et al. ESORICS 2020
[3] L. Zhu et al. NeurlPS 2019
[4] Y. Wang et al. UICNN 2022

Ground Truth: [CLS] the sailors rode the breeze clear of the rocks .
Dummy: ufo D ##ub 999 12 hostages strictly #ouse cool writing nonstop
(a). 5 iterations (Dummy data contains 0 tokens in Ground Truth) {_}v

Dummy: rocks . hydroelectric ari jamie cornerstone greenfield herrera
rocks . cares the

(b). 20 iterations (Dummy data contains 2 out of 9 tokens in Ground Truth)

Dummy: rocks [CLS] ... the rode breeze the . clear the

(c). 50 iterations (Dummy data contains 7 out of 9 tokens in Ground Truth)

Dummy: rocks [CLS] sailors . . the rode breeze the . clear the

(d). 200 iterations (Dummy data contains 8 out of 9 tokens in Ground Truth)

iter 40 private data

1
4
S LR

T

attack iter 0 iter 5 iter 10 iter 15 iter 20 iter 25 iter 30 iter 35
iteration Ak

MNIST

CIFAR-10

LFwW
Gradient Attack on Federated Learning!>3 4
. Data are distributed across devices
. Decentralized collaborative machine learning
. Prevent direct access to private data
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C++ example: #include <omp.h>\n#include <stdio.h>\n\n\nint main(){\n i ’é"‘;y— &l M\g“;:r— «
int x = 2;\n\n #pragma omp task shared(x) mergeable\n {\n x++;\n ¥\n ’ "'Q' 3 P} """ AP A
#pragma omp taskwait\n\n printf("%d\n",x);\n return 0;\n}\n { ? It ; 4
Fortran example: program DRB130_mergeable_taskwait_orig_no\n use omp_lib\n e A “'_;*‘ SN it "r-
implicit none\n\n integer :: x\n x = 2\n\n !$omp task shared(x) " '+ e . nd < ¥
mergeable\n x = x+1\n !$omp end task\n\n print 100, x\n 100 format ('x b’x W ':’: w -
=',31i8)\nend program ! [
HPC climate

DCI STEM image

rview

Efficient Computing for ML system [Training and Inference]
~“Hardware-aware pruning (SC-21, EMNLP-20, DAC-21,
ISLPED-20, IJCAI-21, ACL-22)

Knowledge Distillation (ACL-22, [JCAI-23)

Fine-tuning free (IJCAI-21)

Quantization (SC-23)

-Sparse training (ICCD-22, DAC-23)

"GPU kernel design (ICCAD-23)

Run-time reconfigurable Inference (ICCAD-22, DAC-21, DATE-
22, DAC-22)

_Platform (ReRAM, FPGA) (ISCA-21, DATE-21 (BPN), DAC-20)
Technology{ Optical Neural Network (DAC-23)

Algorithm _

System

Efficient Computing for privacy preserving
protocols

~ Gradient attack (EMNLP-21, IJCNN-22)
Membership Inference Attack (IJCAI-21
Secure federated learning (EMNLP-21
(Oral), Oakland-23)

FHE-based PPML (ICML-23)
-MPC-based PPML

~MPC-based PPML (DAC-23, MICRO-
23, ICCV-23)

Algorithm

System

e

Hardware
Mobile Device

GPU

Energy Harvesting ReRAM
devices

Driver
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Source: Xu et al, HPCA 2015




. Lawrence

Livermore
National
Laboratory

Major Sponsors

Pl, Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a
Service: From Algorithm to Hardware, NSF

Co-Pl, GNN-based Hardware Trojan Detection for Large Complex Third-Party Ips, NSF IUCRC CHEST

in()i\n
\\\\\\

Pl, Feasibility of Transformer-based Code Migration for HPC, DOE/LLNL e

®
Semiconductor
Research
Corporation

EVERS=URCE PI, CLIMB: Connecticut’s Low-carbon, Innovative, and

Pl, Evaluating the Impact of Preferential Trade Agreements on Agricultural and Food Trade: New Insights from Naturalg
Language Processing and Machine Learning, USDA NIFA '

Co-PI, Developing a food image recognition technique to evaluate the nutrition information of restaurant foods
and community food environment, USDA NIFA Hatc

Nutrients (per 1 kg)
Calories: 5930 KCal

Carbohydrate: 0.7402 kg
Fat: 0.1221 kg
Protein: 0.4415 kg

Pl, Exploring Extreme Sparsity for GNNs to Achieve High Energy Efficiency in Large Core-Count Machines

odernized electric grid for Better resilience

PI, Optigrid: Planning & Optimizing the Power Grid During the Low Carbon Transition in Connecticut

PN
TRAVELERS )

Co-PIl, Change and Damage Detection from Aerial Image

Co-Pl, Creating Insurance-Specific Transformers for Representation Learning from Large-scale Unstructured
Claim Text, Travelers

Outstanding Student Paper Award @ 2023 HPEC. Bin Lei, Caiwen Ding (UConn), Le Chen, Pei-
Hung Lin, Chunhua Liao (LLNL). Creating a Dataset for High-Performance Computing Code
Translation using LLMs.: A Bridge Between OpenMP Fortran and C++.




Sparsity types

Sparsity (e.g., pruning) makes the machine

learning model small & fast

° ¢

Pruning

—

Dense Sparse

4 3 6 |9 | Pruning|l0 |0 6 |0
8 |7/ 6 2 - O |7 [0 2
4 8 |3 |2 0O 8 0 |0
5 2 |4 |9 5 2 0 |0

Column pruning Tens?r-tile
Irregular Row Pruning
0 [0 |6 |0 4 13 6 9 4 10 6 |0 0O |0 |6 |9
0 |7 |0 |2 0O |0 |0 |0 8 [0 |6 |0 0O [0 6 2
0 [8 [0 |0 4 18 |3 |2 4 0 3 |0 4 18 [0 |0
52 00| oooo|[|slol4lof|sg 2l

Or the combinations

11
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FORMS: Fine-grained Polarized ReRAM-based In-situ

Computation for Mixed-signal DNN Accelerator

Geng Yuan, Payman Behnam, Zhengang Li, Ali Shafiee, Xiaolong Ma, Hang Liu,
Xuehai Qian, Mahdi Bojnordi, Yanzhi Wang, Caiwen Ding

(ISCA'21) The 48th International Symposium on Computer Architecture, 2021

Training with ADMM regularized optimization : : 5,/|[] [—SinIndicator ]
— e e — | I ] | Driver | | Driver |
. ( B Optimized [ MCU MCU S
Pre-trained . . Fragment P 1%l 2
i I S| 1= 4
DNN Model @ [ Welght Prumng ] :> Polarizaﬁon @ :> R(;)R&leaware E> % al E al >
. ‘ L ) odel ! £ [s&H ] [s&H |
2 N\ [ £
: : : | ' & 8 [TADCs | [TADCs |
\ — ;
I I I A ! Pruned ! £ !
1 1 I 1 \/ | g ' ET | Driver | | Driver |
| : : ¢ v /Ppolarized 1 [[|[S | (2| i [ £
)L I ; ‘ VR elle] TP |2le| THEB
1 : I
: after orunine 1 = ; allimmt  +/ Quantized . mcu | | mcu ||} T e T
: P : g : [ positive weight : | I | . [abcs | | [ApGs |
2D weight format [Jpruned weight [ negative weight : : =i Tile ' ! MCU
i I
1 ]

FORMS Optimization Framwork FORMS Accelerator Architecture Design

12



FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

Challenges et
. . . § +Vdd—{ >
* Mapping signed weights
« Decompose crossbars to positive and a negative ones (PRIME [1]) S
¢ Slgnlflca nt crossbar overhead Figure 1: Illustrative example of the circuit for the
RRAM crossbhar arrays.

* Add an offset to the original negative weight values (ISAAC [2])
A bias must be subtracted from the results.

e Count all 1s in MSB position (negative values) for all inputs and perform subtractions for each
of 1s.

* Peripheral circuit overhead

e Software optimization agnostic (mapping, pruning, quantization)
* Not explore intrinsic sparsity of current DNNs

 Hardware managed with remarkable overheads such as row indexing, routing
controls, word-line controls, etc. (ReCom: DATE’18, SRE: ISCA’19)

* highly model-dependent: (SNRram: DAC’18)

[1] PRIME, Chi et al. 2016 ISCA
[2] ISAAC, Shafiee et al. 2016 ISCA

13



FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

* Our solution: FORMS -- algorithm/hardware co-design

Training with ADMM regularized optimization ! : 5 ,/|[| [SignIndicator |
e — — — ; I ] | Driver | | Driver |
— r 3 I Optimized I MCU | | MCU 2
Pre-trained . . Fragment =|[ZI |
. . 1 » 1 7] « vl
DNN Model| = [ VL L ] o> Polarization | = B [ReRAM-aware ) HE a gle| TP
. ) ! DNN Model ! &8 e M e
: S : : : 1 E 8 | ADCs | | ADCs |
- 2 . 2
1 1 (=] 3
: l ! y 1 \/ Pruned 1 E ' = [ Driver | [ Driver |
1 1 I - S 1 g
1 | I @ ! Polarized ! © v €[ Y |Elo] £
1 1 ! . ! V1R EIE| T |EIE| T
! . - ' |||||||| |||||||||: v/ Quantized | mcu | | mcu || Y [sen Y [sam ]
! after prum.ng ; [ positive weight : q I N ' [apcs | [ ADGs |
2D weight format [Jpruned weight [ negative weight : : H | Tile ‘I : MCU
! I
1 ]

FORMS Optimization Framwork

FORMS Accelerator Architecture Design

* Two types of structured pruning methods
— Filter pruning .
— Filter-shape pruning
original fragments polarized fragments sub-array
. . _ . . +3| |[+2] |-1 +4| |-1| |-2 B
Weights in a fragment are polarized with the same sign. 1l 2] =2 A1 e B
— Either positive or negative. +4| |-2| [+1 : +5( |-2| | O sub-array| ¥
— Sign bit saving. sl (=1 k=2 0f [-2] |3 B Rl
e New Chall enges: [Jfragment 1 [Jfragment2 [J]fragment 3 crossbar array
— How to determine the sign of weights in a fragment »

— The mapping policy of weights to sub-array columns



FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

ADMM-Regularized Optimization

* To achieve optimized weight pruning, polarization, and quantization, FORMS utilizes Alternating Direction Method
of Multipliers (ADMM) into the training process.

* ADMM regularization can reforge and separate the problem, then solve them iteratively.

minimize L£({W,} ., {b;}1,).
Finimize  L{{W:}iz1, {bikica) (1)
subject to W,;e€eS;,. W, eP,;. W, € Q,‘. v =1.....! N,

W, € S, := {H | the percentage of nonzero filters and filter-
shapes in H is less than or equal to «; and [3;, where «a; and
3; are predefined hyperparameters. For example, suppose we
want a 43% filter sparsity and 62% shape sparsity in 7, layer, ("7 77T ey A )

. o Pre-trained Model !
then we set o; = 0.57 and 3; = 0.38. re-trained Mode .':[Sub-problemlz] [S“b'Pl'oblesz
=2 X 1 find W, b findZ
[ Crossbar-aware ,' I I
Structural Pruning \ i ! \ / :
. I R ! (Update: U ;
P ={the weights on each fragment(a column of a Fragement ADMM : = 3 ) :
Polarization Regularization | ! r . w 1
crossbar sub-array) ~ 8 y ' Euclidean '
LI | ® . I
- m ” Projection
S = {+ if 2;21(“ i) >0, E{eRAM(t,;zn:t: ' : L J‘ ) !
: _ “W1Q uan' on | ~
otherwise, Q i : [Optimized :
Polarized Model » Model :
for ReRAM R !
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of 15

multipliers. Foundations and Trends in Machine Learning 3(1) (2011) 1-122



FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

. ) e original compression Fracment size
Formulation: problem is not differentiable, _ 5 . .
N thus * There is no accuracy drop with appropriate
minimize F{Wi},{bi}) + > 9:(W3), not applicable through fragment size (e.g., 8, 16).
=1 backpropagation * Minor accuracy drop when fragment size is
0 if W, €8S, or P; or Q;. 32.
(W) = { i €
+00  otherwise.
ADMM formulation
minimize W, b, + (], g _ Accuracy vs. different fragment size
{Wj}.{bi} ({ } - { zz_; ’3?77 . : t \
subject to W, =Z;, i=1,..., N, 37 =
§74
l < 73 r—r— 4\‘\\‘
Augmented Lagrangian of ADMM formulation 72
Solving 2 sub-problems |terat|vely Y% fagmentsze - 0

——-VGG16 —4A—ResNetl8 -®-ResNet50

minimize  f fF({Wi}iLy, {bi}iL, +Z W, —z!+U!|%, Stochastic Gradient Decent.

N

mil{lizm}ize Z gi(Z;) + Z Pi IWitt -z, + U!||%.Euclidean projection: Zi+1 = H(W§+1 + Uj).
: i=1 K

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method 16
of multipliers. Foundations and Trends in Machine Learning 3(1) (2011) 1-122
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skipping
Logic

1 bit/cycle

I JL
inp, 0000 0000 0|b10 1011 —>

l
inpz 0000 0000 0100 1011 —

l
inp3 0000 0000 0000 0110 —
ol
y
1npm 0000 0000 0011 0100 —
Required
Effective Input Cycles
=7

[y
(<)}

[y
N

Avg effective
input cycles

FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

* Larger fragments (e.g., ISAAC) have a higher probability to contain at least one input that its significant
bits are not zero.

* Zero-skipping logic with negligible overhead in corporation with small fragment size can catch the
intrinsic sparsity of DNN models.

Fragment

>

flow control

@

@

&

H

e Zero skipping saves requited feeding input cycles.

* Average effective input cycles for various fragment sizes of different layers of ResNet50 (CIFAR100).

Average effective input cycles of fragments (ResNet50)

—

-B-layerl0

Fragment size

-+-layer26 ~o-layer49

128

-+-all-layers avg

vd




FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

Original

Prune Fragment

Acc.

Crossbar

Method (3A2?§it) Ratio Size (ISDfI;)iIt)) Reduction
CIFAR-100
. . st | 67.62% | 1.73x - e
Training: 8x NVIDIA Quadro RTX 6000 GPU by T -006%

ResNet18 76.37 % 6.65 % 186 -0..037:7 53.2x

PyTOrCh API S ] 7141% | 2.11x : (:3'27._1%3’) 2.11x
A 77.35% | 9.18x 3 031% | 73.44x

Data Sets: MNIST, CIFAR10, CIFAR100, ImageNet _— To | 01%
VGG16 73.26% A5z ‘—‘ (326%)—;) 2%
DNN Models: LeNet5, VGG16, ResNet18, ResNet50 VGGl | T3% ";‘5" | o] o
mageNet
DCP[7] 88.98% 1.42 % 0'12% [ >¢
° ResNetl8 (32-bit)
SOftwa re BaSE|IHES: T"R’i“l‘\;gjgﬂ 89.07% | 3.33x _ 0.6% 12.4%
4 0.03%

* NeurlPS’15, ICCV’17, DAC’17, ECCV’18, NeurlPS'18, ors |4 B 1330,

VPR’19, ASPDAC’20 =T P
‘ ’ B o v

Design Space Exploration: In-house tool while its T D e e e 0. M
back-end utilizes unified CACTI 7.0, NVSIM, and i -

NVSIM-CAM, with multi-banking support CIFAR100: 53X, 73X, and 65X crossbar reduction on ResNet-18,

* Hardware Simulator: In-house tool while SW ResNet-50, and VGG-16, respectively.

| k
results are back annotated ImageNet: higher crossbar reduction (13X and 16X) with higher or

 Hardware Baselines: similar accuracy when fragment size is 4 and 8.

e Digital: DaDianNao, TPU, WAX, SIMBA
* Mixed-Signal: ISAAC, PUMA 51Y. He et al,, FPGM, CVPR'13
’ [6] Z. Liu et al., NetworkSlim, ICCV’17

[7] Z. Zhuang et al., DCP, NeurIPS’18

[1]Y. Wang et al., Group scissor, DAC’17

[2] S. Han et al,, IterativePrune, NeurlPS’15
[3] X. MA et al., TinyBytAcc, ASPDAC’20

[4] Y. He et al., AMC, ECCV’18

[8] S. Sayyaparaju et al., GLVLSI'17



Frame per Second Speed UP

Normalized to ISAAC-32

FORMS: Fine-grained Polarized ReRAM-based DNN Accelerator

Applying pruning and quantization will speed up
the frame processing rate of ISAAC by 160x and
200x for VGG16 and ResNet18.

Applying pruning and quantization increases
FORMS speed up, up to 109x and155x when the
fragment sizes are 8 and16, respectively.

377.94

307.78
287.53

ResNet18 CIFAR-10

VGG16 CIFAR-10

® Pruned and Quantized-ISAAC

Pruned and Quantized-PUMA
= FORMS-8 Without ( Zero skipping ), With( Quantization, Prunning, Polarization)
= FORMS-16 Without ( Zero skipping ), With( Quantization, Prunning, Polarization)
m FORMS-8 With( Prunning, Quantization, Polarization, Zero skipping)
= FORMS-16 With( Prunning, Quantization, Polarization, Zero skipping)

* By applying zero-skipping on top of model

optimizations, the speed-up of FORMS goes up
to 377 X and 366 X when fragment sizes are 8
and 16, respectively.

[ 377.94 \

Frame per Second Speed UP
Normalized to ISAAC-32

ResNet18 CIFAR-10

VGG16 CIFAR-10

= Pruned and Quantized-ISAAC

Pruned and Quantized-PUMA
= FORMS-8 Without ( Zero skipping ), With( Quantization, Prunning, Polarization)
m FORMS-16 Without ( Zero skipping ), With( Quantization, Prunning, Polarization)
m FORMS-8 With( Prunning, Quantization, Polarization, Zero skipping)
m FORMS-16 With( Prunning, Quantization, Polarization, Zero skipping)
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Graph Datasets Features

Accel-GCN's Benchmark Graph Datasets Details

Graph Name| # Nodes #Edges | Sparsity (%) [Graph Name| # Nodes #Edges | Sparsity (%) [Graph Name| # Nodes #Edges | Sparsity (%)
am 881,680 5,668,682 99.9993 [amazon0601| 403,394 5,478,357 99.9966 Artist 50,515 1,638,396 99.9358
Arxiv 169,343 1,166,243 99.9959 Citation 2,927,963 | 30,387,995 | 99.9996 Collab 235,868 2,358,104 99.9958
com-amazon| 334,863 1,851,744 99.9983 OVCAR-8H | 1,889,542 | 3,946,402 99.9999 PRODUCTS | 2,449,029 |123,718,280( 99.9979
Pubmed 19,717 99,203 99.9745 PPA 576,289 |42,463,862 | 99.9872 Reddit 232,965 (114,615,891| 99.7888
SW-620H 1,888,584 | 3,944,206 99.9999 TV:;:JEIR_ 580,768 1,435,116 99.9996 wikikg?2 2,500,604 | 16,109,182 | 99.9997
Yelp 716,847 | 13,954,819 | 99.9973 Yeast 1,710,902 | 3,636,546 99.9999 youtube 1,138,499 | 5,980,886 99.9995

* High Memory and Computation Costs:
* Large graphs demand substantial memory storage and computational resources
* Optimizing algorithms and utilizing parallel processing can help manage the increased overheads

* High Sparsity:

* The high sparsity; many nodes have few connections
* Techniques tailored for sparse graphs can be beneficial in this regard.



SPMM Background

* Basic SPMM approaches|1]:

(a) Inner product (b) Outer product (c) Row-wise product (d) Column-wise product

e Row-wise SPMM is well-suited for GPUs for several reasons:

* Coalesced Memory Access

* Optimized Data Locality and Cache Usage
* Balanced Workload

e Streamlined Control Flow

[1] Srivastava, N., Jin, H., Liu, J., Albonesi, D., and Zhang, Z. (2020). "Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise product,” 2020 MICRO.



State of the Arts

* PyTorch-Geometric (PyG)[1] utilizes the torch-scatter library, which is built on CUDA, to perform graph
aggregation operations central to its function. This library aids in the support of node embedding propagation,
following the essential principles of graph-processing systems.

* Deep Graph Library (DGL)[2] incorporates a ready-to-use Sparse-Matrix Multiplication (SpMM) solution,
specifically utilizing the functionalities in cuSPARSE, for straightforward sum-reduced aggregation.
Furthermore, it leverages its own CUDA kernel for the implementation of more sophisticated aggregation
schemes that factor in edge attributes.

 GNNAdvisor[3] is an adaptive and efficient runtime system developed to address the limitations of existing
Graph Neural Networks (GNNs) frameworks. It is designed to foster the acceleration of various GNN
workloads on GPU platforms through several strategic interventions, such as performance-relevant features
identification, workload management, GPU memory hierarchy utilization and lightweight analytical model.

 CuSPARSE[4] is a library in NVIDIA's CUDA toolkit, facilitating optimized sparse matrix operations through
GPU-acceleration. It is essential in high-performance computing applications, helping developers manage
sparse matrices more efficiently in CUDA-accelerated environments.

[1] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds (ICLR), 2019.

[2] MinjieWang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and
Zheng Zhang. Deep graph library: Towards efficient and scalable deep learning on graphs. ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[3] Yuke Wang, Boyuan Feng, Gushu Li, Shuangchen Li, Lei Deng, Yuan Xie, and Yufei Ding. Gnnadvisor: An efficient runtime system for gnn acceleration on gpus. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI'21), 2021.

[4] M. Naumoy, L. Chien, P. Vandermersch, and U. Kapasi. Cusparse library. GPU Technology Conference (GTC), 2010.



Research Gaps

 Limitations:

Both PyG and DGL face low scalability when dealing with large sparse graphs with high-dimensional
node embeddings.

* PyG: due to high-overhead atomic operations.

* DGL: despite utilizing SpMM strategies and its CUDA kernel for more complex aggregations.

GNNAdvisor leverages Non-zero groups (NG) to improve workload mapping.

* Warp-level workload imbalance and resource underutilization when dealing with graphs exhibiting power-law non-zero
distribution.

CuSPARSE is a popular baseline for SoMM kernels, but restricts further insight due to its closed-source
nature.

* Hilight of our Accel-GCN design:

Lightweight degree sorting stage to group nodes with similar degreeBlock-level partition.

Block-level partition strategy that dynamically adjusts warp workload sizes, enhancing shared memory
locality and workload balance, and reducing metadata overhead.

Combined warp strategy that improves memory coalescing and computational parallelism in the column
dimension of dense matrices.



Degree Sorting and Block-level Partition
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Fixed NG (workload) Size

(imbalanced workload W|th|n bIocks)
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Combined Warp Strategy

Combined warp manner
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Overall Performance

-
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Normalized Speed
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Normalized Speed

PRODUCTS Pubmed Reddit SW-620H TWITTER-Partial wikikg2 Yeast Yelp youtube

B cuSPARSE I GNNAdvisor B Graph —BLAST EBXX Accel — GNN(ours)

* Average improvement of 1.17x over cuSPARSE; up to 1.45x improvement.

* More improvement than GNNAdvisor and graph-BLAST across all benchmark graphs,

* Average speedup of 1.86x and 2.94 %, and a maximum speedup of 3.41x and 5.02x, respectively.



Kernel Execution Time vs. Column
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* A gradual and smooth | increase in runtime as the column dimension increases.

Benefiting from memory coalescing and automatic alignment of intermediate results proffered by the combined

warp strategy.



Block-level Partition vs. Warp-level Partition

Profiling results on 18 graphs; each with 18 dimensions; total 2016 graph tests.

;o PR \  Speedup
1.30 4 . SRR A AT, & ) Slowdown
—  Average

e * Block-level partition has realized an
120] e a0y average speedup ranging from

X ki - 1.05x to 1.07x across disparate
o A e iR 8 column dimension intervals,

2105

culminating in a peak improvement
of 1.31x%; and a least effective case
of 0.92x.

1.05 A

1.00 A

Speedup Ratio With Block-level Partitioning

0.95 1

20 40 60 80 100 120
Column Dimension

Fig. 7. Speedup of (i). degree sorting & block-level partition over (i1). warp-
level partition. Both integrated with combined-warp strategy.



Combined Warp vs. Single warp looping

2.0 = -
peedup
P pee g * Combined warp strategy leads to
3-8

performance improvement specifically

within the column dimension intervals

p R R, [0, 32], [32, 64], and [96, 128], with an

average speed gain recorded between
1.23%x and 1.33x.

* This enhancement is somewhat
diminished within the column
dimension range [64, 96], a divergence
potentially ascribable to unaligned

08{ | | | | | cache line size in the prevailing GPU

20 40 60 80 100 120 ar‘chltectu re.

Column Dimension

[y
(@)
1

Speedup Ratio With Combined Warp
[ b
N I

=
o
1

Fig. 8. Speedup of degree sorting & block-level partition (i). with combined-
warp strategy over (i1). without combined-warp strategy.

Open sourced at: https://github.com/xiexi1990/ICCAD-Accel-GCN in mid August 2023, +14 stars
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Sparse Training

FROM CHIPS TO SYSTEMS — LEARN TODAY. CREATE TOMORROW

: : .. Comparison of different sparsification methods
Weight pruning vs. sparse training

J:S::;_ Iterative Sparse
retrain pruning tralnlng
1.0 Sparsity Low Medium High
0.8 1 Accuracy Low Medium High
>\‘ ] . .
= 0.6 Tri:)rlltng High Medium Low
= | Train-Prune-Retrain
= 0.4 ~ (ADMM, SLR) . . : : .
—— lterative pruming aMP, LTH)  VVe€Ight pruning: ADMM [1], Lottery Ticket Hypothesis (LTH) [2];
0.2 __ Sparse training (SET, RigL, > Training is NOT efficient; Efficient Inference.
0.0- GraSP, DeepR, DSR) Sparse training: SET[3], RigL[4], GraSP[5], DeepR[6], DSR][7];
0 50 100 150 200 250 300 > both efficient training and inference

» Sparsity is introduced from the beginning of training = less memory footprint due to a
smaller number of parameters

» Can achieve same accuracy compared to dense training using same training epochs
[1] Zhang, Tianyun, et al. “A Systematic DNN Weight Pruning Framework using Alternating Direction Method of Multipliers.” ECCV (2018).

[2] Jonathan F., and Carbin M., "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks." ICLR, 2019

[3] Mocanu, D., et al., "Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science." Nature communications 9.1 (2018): 2383.
[4] Evci, U., et al., "Rigging the lottery: Making all tickets winners." ICML. PMLR, 2020.

[5] Wang, C., et al., "Picking Winning Tickets Before Training by Preserving Gradient Flow." ICLR, 2019.
[6] Bellec, G., et al., Deep rewiring: Training very sparse deep networks. ICLR, 2018.
[7] Mostafa H. and Wang X., Parameter efficient training of deep convolutional neural networks by dynamic sparse reparameterization. ICML, 2019.

Training epochs
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Weight pruning

One of the most common model compression methods.

Many works: ADMM [1], AMC [2], GSM [3], LTH...

Use Surrogate Lagrangian Relaxation (SLR)-based pruning as an example[4] (our work).

(Image Classification)

A Params
Model Method *  Pruned
(%)
(%)
SLR 91.2
AMC [He et al., 2018] 91.0 90
LO [Louizos et al., 2018] 80.0
. VGG-16 ~SLR 93.1
100 Hardpruning Accuracy One-shot pruning[Liu et al., 2019] 92.4 o
*— o— SLR 932 P
901 —e Iter. Prun. [Han et al., 2015] 92.2
X g0+ ‘ SLR (at 20k iterations) 89.9
> ResNet-18  Jter. prun. [Frankle and Carbin, 2018] 750 50
o 701
e ‘ SLR 93.6
3 6ol ResNet-50 AMC [He et al., 2018] 935 %
<
: SLR 923 844
0TI aovm ResNet-36  GSM [Ding et al., 2019) 941 850
a0 L5 ‘ , | Group Sparsity [Li er al., 2020b] 92.65  79.2
F NN o a [Zhao et al., 2019] 9226  20.49
VYT Y e AN GAL-0.6 [Lin et al., 2019] 9338 11.8
Compression Rate [Li et al., 2016] 93.06 13.7
NISP [Yu et al., 2018] 93.01 426
Faster convergence than ADMM KSE [Li et al., 2019] 9323  54.73
DHP-50 [Li et al., 2020a] 93.58  41.58

Better accuracy

[1] Li, Zhe, et al. "E-RNN: Design optimization for efficient recurrent neural networks in FPGAs." In 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp.
69-80. IEEE, 2019. (our work).

[2] He, Yihui, et al. “AMC: AutoML for Model Compression and Acceleration on Mobile Devices.” ECCV (2018).

[3] Ding, Xiaohan, et al. “Global Sparse Momentum SGD for Pruning Very Deep Neural Networks.” NeurlPS (2019).

[4] Gurevin, Deniz, et al. “Enabling Retrain-free Deep Neural Network Pruning Using Surrogate Lagrangian Relaxation.” 1JCAl (2021). (our work).
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State-of-the-arts on sparse training

Repeat every AT epoch
1.1/ 0 1.2| 0 (2] 2.5/ 0 (0:2] 0 2.8/ 0 (0| 0
01800 029/0]0 0 3.1 0 |€3)

Model 4o 61.2[1.9 | framing = -~ pal15[2.9 To [0 17]2.2
3.1/0.9/ 0 | 0 (AT-1) 0.7]1.6/ 0 [0 | Gradient\. [0-9[13[CH| 0

wo wAT 0 [0.9[0.72.3] WA
0.8| 0 [0.6/69

04/0 |0

: Weight to drop 00 @|2-2

GAT@(MAT== 0)

Select growth candidates

@) : Weight to grow

Step 1: Randomly initialize weight tensor with a fixed sparsity.

Step 2: Train the sparsified weight for AT -1 epochs, where AT is the drop-grow frequency.

Step 3: During forward propagation, drop k weights with the least absolute magnitude (k=2 in the example).
Step 4: During backpropagation, grow the weights with the highest k absolute gradients back to non-zero.

Repeat steps 2-4 till the end of the training.

37
Evci, Utku, et al "Rigging the lottery: Making all tickets winners." ICML, 2020.



How to achieve Extreme Sparsity?

Motivation Highlight of our solution
0.051 Non-active state Drop-and- . 0.05 Non-active state Drop-and- :
t (weight= ' > t (weight=0) -
0.00- (weight=0) A ABTOW 8¢ 0.00 weigh OW.__-9¢
Eo —0.051 At training iteration 1000, X ?D —0.054 At training iteration 1000, i |
g ; sruisntotReTine=1756-6 (; N N g gradient of red line=1.75e-6 |
—0.107 oradient of blue line=3.28e-2| . » ¢ Taaportant weight ~0.101( gradient of blue line=3.28¢-2 | L oioh
iweight growth (ignored) i welght
—0.15 Drop-and-grow =(RigL, ITOP, ...) 3 —0.151 Drop-and-grow=> (s
0 500 1000 1500 2000 0 500 1000 1500 2000
Training iteration Training iteration
(a) Non-active weights with small initial gradients are ignored in (b) Non-active weights with small initial gradients could be retained
greedy-based weight growth methods (i.e., RigL, ITOP, ...) and grown in proposed method.

« Greedy-based grow methods (e.g., RigL, ITOP [1],
GraSP, DeepR, DSR;): search for sparse masks
with a local minimal -> limited weights coverage->
limited accuracy or sparsity

« Random-based grow methods (SET, ITOP [1]): lower accuracy

38
[1] Liu, Shiwei, et al. "Do we actually need dense over-parameterization? in-time over-parameterization in sparse training.” ICML, 2021.



How to achieve Extreme Sparsity?

Our solution — Balancing the Exploration- i: Layer number
Exploitation Trade-off +* Training iteration
SU(W!, X) " A’ Input training data
t ) 9 . .
S; = | 8\;75 | + CNﬁ T t=qAT, 1=1,2,..L St: Importance score tensor in g — th mask update round
[ oUW, ) . ,
Exploittion Exploration | —awt | absolute gradient tensor of i — th layer at t — th
(magnitude) (prefer unexplored regions) Itetratlon _
N;: Counter tensor that collects the activated frequency for each
Example: §1%9°= 169 = 3.1 + 2¢ 5% —01212(105 weight element
o Drop Importance Grow Update Drop ImportaI.lCE‘
I‘;‘t‘ahzat“’t“_l ) Update AT t=AT garcalculation :WAT+1 t=AT+] yaT+2 1= AT+) 28T t=2AT gzar calculation :
wo — 0— Wo T 0 [-7.0}8f 0 || [ies 0 [32]140 :@5.4 olo]l|l[82]57/0]0 o546/ 00| [0]o[s7]6s !
5 5'8 (') eyl 5.3 (; s 0 |-0.8| 0 |aa|| [153] o 1'5.'250 : 'o'-g.q‘;-; 4.4 0 [9.9[43[41]| || 0 |-87/33]5.8 E[1_4_.4: 0 [15]| 0 | ,Repeat till
— (') - 1'6 /15 (') — 1'1 / 18| 0 [6.8}3¢|| [0 [146] 0 |42 {[33] 0 [6:3] 0 / 28] 0 [7.1] o / 05{ 0 [6.1] 0 3.1?33 0 |96 :I?aeineinr:g of
. e “de . =UV. “de - I
AT PAT NAT W E_q- 1| GAT+1 PAT+1 GAT+2 fAT+2 g2t P2AT N 2AT TE‘]- I
NO Gl "31 %GZ "€2 ‘._G_ — J.. e A R - — I v v v I
olololo : 3.1 o|j1(1(0 |: :
olofo]o I 0j1j10]1 :: !
ol 11100 l [1]1]oo0 . . :'___1
EB‘_:‘ o IERRERIR Activated twice :i_ EdrOp
0|1|0|1 | I ._'_'_I
10|11 : L1ofp1yo :: | grow
iask ' mask V=

Dynamic Sparsity Training via Balancing the Exploration-Exploitation Trade-off (DST-EE) (ours) 39



Extreme Sparsity

GNN link prediction
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Dm LTH [ DST EE
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98%

80_% 9(_)%
la-email

Dataset q #Epochs .| CIFAR-10 | CIFAR-100

Sparsity ratio g | [90% 95% 98% | | | 90% 95% 98% |

VGG-19(Dense) 4 160 93.85 + 0.05 | 73.43 + 0.08

SNIP (Lee, Ajanthan, and Tori2019) 4 160 = 93.63 93.43 92.05 72.84 71.83 58.46

GraSP (Wang, Zhang, and Gross¢ 2020) 160 *= 93.30 93.04 92.19 71.95 71.23 68.90

SynFlow (Tanaka et al| 2020) 160 = 93.35 93.45 92.24 71.77 71.72 70.94

STR (Kusupati et al| 202() 160 ™ 93.73 93.27 92.21 71.93 71.14 69.89

SIS (Verma and Pesquef 2021) 160 = 93.99 93.31 93.16 72.06 71.85 71.17

DeepR (Bellec et al![2018) 160 = 90.81 89.59 86.77 66.83 63.46 59.58

SET (Mocanu et al|[2018) 160 = 92.46 91.73 89.18 72.36 69.81 65.94

RigL (Evci et al[2020) 160 o 93.38 + 0.11 93.06 + 0.09 91.98 + 0.09 | 73.13 + 028 72.14 + 0.15 69.82 + 0.09

DST-EE (Ours) 160 = 9384+0.09 9353+ 0.08 9255+ 0.08 | 7427+£0.18 7315+0.12 70.80 £0.15

- - EEEEEE N, '

ResNet-50(Dense) 160 1 94.75 + 0.01 | 78.23 + 0.18

SNIP (Lee, Ajanthan, and Tor12019) 160 = 92.65 90.86 87.21 73.14 69.25 58.43

GraSP (W_\aang! Zhang, and Grosse 2020) 160 ™ 92.47 91.32 88.77 73.28 70.29 62.12

SynFlow (Tanaka et al| [2020) 160 = 92.49 91.22 88.82 73.37 70.37 62.17

|

STR (Kusupati et al|2020) 160 = 92.59 91.35 88.75 73.45 70.45 62.34

SIS (Verma and Pesquet 2021) 160 = 92.81 91.69 90.11 73.81 70.62 62.75
__RigL (Evgi et all2020) 160 = 9445 + 043 9386 + 025 9326 4+ 022 | 7650 + 033 7603 4 034 7506 £ 027

DST-EE (Ours) 160 = 94.96 + 0.23 94.72 + 0.18 94.20 + 0.08 | 78.15 4+ 0.17 77.54 + 0.25 75.68 + 0.11

d I EEEN
EEEER
Training FLOPS  Inference FLOPS Top-1 Acc Training FLOPS  Inference FLOPS Top-1 Acc

Methods E Epochs (xel8) (xe9) (%) (xel8) (xe9) (%)

Dense fo100 | 3.2 8.2 76.8 £0.09 | 3.2 8.2 76.8 £+ 0.09 |

Sparsity ratio I - E 80% | 90% |

SNIP (Lee, Ajanthan, and Torr 2019) - 0.23 % 0.23x - 0.10x 0.10x -

GraSP (Wang. Zhang, and Grosse 2020) 150 0.23x 0.23x 2.1 0.10x 0.10x 68.1

DeepR (B g 2018) . n/a n/a 71.7 n/a n/a 70.2

SNEFS (Dettmers and Zettlemoveﬂl 019) - n/a n/a 73.8 n/a n/a 723

DSR (Mostafa and Wang 2019) . 0.40x 0.40x 73.3 0.30x 0.30% 71.6

SET (Mocanu et al| 2018) 2 0.23 % 0.23x 72.9 + 0.39 0.10x 0.10x 69.6 + 0.23

RigL (Evci et al|[2020) 100 0.23 % 0.23x 74.6 + 0.06 0.10x 0.10x 72.0 £+ 0.05

MEST (Yuan et al.! 2021) 100 0.23x 0.23x 75.39 0.10x 0.10x 72.58

Rigl -ITOP (Liu et al. 20211) 100 042 % 042 7584 + 0.05 025% 024x 73 82 4+ 008

DST-EE(Ours) 100 0.23 x 0.42 76.25 + 0.09 0.10x 0.24 x 75.3 + 0.06

Table 2: Performance of sparse ResNet-50 models on; ImageNet dataset. The results reported with (mean + std) are run with three different

random seeds.
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Efficient DONN

* Challenges posed by high computation and memory storage of CMOS-based DNN systems.

 Diffractive optical neural networks (DONNSs) as an ultra-efficient DNN accelerator
* Mismatch between numerical modeling and physical deployment of current DONN systems

(a) Backpropagation (d)
Ph}’SlCS-&W&I’G I'OllghIlCSS o II}put Plane | . Output Plane (Detector)
optimization process for RN SO = S = S £ S N = S - e
DONN system

Improves accuracy
awareness, reduces

Coherent Light
(Laser Source)

XN

3D printed DONN

. . . | - I 4 — e R
interpixel crosstalk impacts Secondary Waves  Diffractive Layers ZJ 3D printed smoothed layer
T lree Step S: roughness Input Plane Dense Diffractive Layﬁ:fs ------ Pfte?f?r jAf:;:_a_y_ Input Plane Sparse and‘Smooth Diffractive La—y—e—r—s— —?_%t_e_cf(_)r_ éf_f-a_Y“
regularization, block MO . \ : . Vg
. . . . h \ o N[ : Neulll----- 5 .2 AN A - ; i 4 5 .2 h
sparsification, 2 periodic DO RS N L ‘R ) q N <L TR
. Mg NN xS oughness L | s N w .
; h & . moothness BN, ) l :
phase modulation NN smoo NN

21 Optimization

(b) Train Baseline Model (c) Train Sparse Model with Roughness and Smoothness

[23°’DAC] Shanglin Zhou*, Yingjie Li*, Minhan Lou, Weilu Gao, Zhijie Shi, Cunxi Yu, Caiwen Ding, Physics-aware Roughness Optimization for Diffractive Optical Neural Networks, In Proceedings of ACM/EDAC/IEEE
Design Automation Conference (DAC).



Efficient DONN

° Ours_ A: r0ughneSS- TABLE II: MNIST Result. Baseline is trained under 50 epochs. The TABLE IV: KMNIST Result. Baseline is trained under 100 epochs.

sparsification are trained with block size equal to 25. The sparsification are trained with block size equal to 20.

aware trained model

Model Accuracy R,yerail before R, yerall after Model Accuracy R,yerall before R,yerql after
¢ (%) 27 optimization 27 optimization ¢ (%) 27 optimization 27 optimization
* Ours-B: the model
. . . (51, 6], [8] | 96.67 | 466.39 460.85 (51, (6], (8] | 86.92 | 460.61 445.57
trained with sparsity Ours-A 96.18 416.07 - Ours-A 85.26 462.7 _
Ours-B 96.38 538.78 400.38 Ours-B 86.83 473.08 432.26
° (' Ours-C 96.47 409.41 299.87 Ours-C 85.01 396.84 331.22
OU'I'S C the mOde.l Ours-D 95.90 375.35 280.32 Ours-D 83.19 327.48 288.42
tralned Wlth Sp ar81ty TABLE III: FMNIST Result. Baseline is trained under 150 epochs. TABLE V: EMNIST Result. Baseline is trained under 100 epochs.
and roughness The sparsification are trained with block size equal to 20. The sparsification are trained with block size equal to 20.
Accuracy Roverall before Roverall after Accuracy Rove'r'all before Roverall after
¢ OurS'D: the mOdel Model (%) 27 optimization 27 optimization Model (%) 27 optimization 27 optimization
trained with sparsity, [5], (6], [8] | 87.98 | 464.78 461.98 (5, [6], [8] | 9230 | 463.42 458.48
Ours-A 86.99 421.49 = Ours-A 91.61 435.58 -
p hlS roughness and Ours-B 87.88 488.11 438.53 Ours-B 92.36 465.85 44391
1 - Ours-C 86.79 350.67 305.86 Ours-C 91.16 349.61 336.75
lntra blOCk SmOOthneSS Ours-D 85.76 450.73 229.70 Ours-D 90.74 312.17 298.09
Baseline Sparsify Sparsify + Roughness Intra-block Smooth 21 Optimization Smoothed Layer

0
25 25
50 50
75 75
100 100
125 125

150 150

175 175

Fig: Comparison of the phase mask of the second diffractive layer under EMNIST dataset. Black blocks mean weights inside are sparsified

and set to zero. The fifth is 2z optimization of phase mask that trained with sparsification, roughness and intra-block smoothness. The last
is 3D printed smoothed diffractive layer.



FROM CHIPS TO SYSTEMS — LEARN TODAY. CREATE TOMORROW

PASNet: Polynomial Architecture Search
Framework for Two-party Computation-based
Secure Neural Network Deployment

*Hongwu Peng“], *Shanglin Zhou!', *Yukui Luo'?!, Nuo Xu®!, Shijin Duan!?!, Ran Ran!, Jiahui Zhao!!l,
Chenghong Wang!4!, Tong Gengl®!, Wujie Wen ), Xiaolin Xul?!, and Caiwen Ding!"
*These authors contributed equally.
(IUniversity of Connecticut, USA. ?)Northeastern University, USA. BlLehigh University, USA.
“IDuke University, USA. P'University of Rochester, USA.
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B1{nux219, rar418, wuw219}@lehigh.edu, *lcw374 @duke.edu, Pltgeng@ur.rochester.edu
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Background

o -
= a

Trusted Execution Multi-Party (MPC) Homomorphic HE
Environment (TEE) Computation Encryption )
Method Example Secure setup  Universal circuit ~ Simple key management  Flexible hardware  Straightforward distributed extension
HE U3, U8, 48] Moderate — — v —
TEE 48, 43, 53] Complicated v — — —
MPC 27,832, 44], ours Moderate v v v v

- HE applies operations on ciphertext while the result still can be recovered to plaintext;
- TEE constructs an environment that allow content inside works with confidentiality and integrity;

-  MPC manages sensitive operations and communications on multiple parties while maintaining the
security among each party

[15] Cryptonets [18] Cryptodl
[16] Mlcapsule [43] Visor [53] Slalom
[27] Mp-spdz [32] Cryptflow [44] Cryptflow2
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Hardware Solution — GPU vs. CPU

Microsoft
Azure

Google Cloud

- - -

s
-

T Ty AT PR o, T’:\'j&;:""

------------------------------ -|_--_--_ - — - -----i-----\

N

! . , Enc. Computation | Result\
| = -
1 ! I 1
e L e ‘." N |

: | : = 1
i Client Input %% !
1 ! i 1
I‘ . Hardware acc. | i

N i ——————— -

Secure Machine-Learning-As-A-Service
(MLaaS), MPC setting

HE:

» High cost multiplicative gates for DNN inference.

» >100s per image for a 10-layer SqueezeNet on
CIFAR10 [1]. Intel Xeon ES5- 2667v3@3.2GHz with 224
GB of memory

MPC: CryptGPU [2]

» achieves takes ~2s (VGG-16, CIFAR10) on Tesla V100
GPU with 16 GB memory

» 2.3% faster than the CRYPTFLOW [3] (CPU). (ResNet-
152, ImageNet)

» Two CryptGPU with power budget of 315 x 2 Watt

» Still expensive for non-linear operators such as RelLU

FPGA advantages:

Power efficiency: computational efficient compared to CPUs
and GPUs

Design flexibility: Rich reconfigurable gate-level hardware
resources

[1] Dathathri et al, 2019 ASPLOS.
[2] Tan et al, 2021 Oakland
[3] Kumar et al, 2020 Oakland



Privacy Preserving Machine Learning - Research Gap

A generic framework that combines the aforementioned FPGA

Analysis Result | Secret Data . .
=¥ Jiusljei) fs-u----- et S advantages when both DNN inference and MPC are required,

,rClien ' : . . i

A b | . has not yet been widely investigated.

| E |

: & | (1) ultra-high computation and communication overhead,;
| Input. @ | > vast amount of data communication between the

provider

N edge devices and cloud,
> limited resources (e.g., memory size) on the edge

Co-server ' . . . .
| : (2) Adding cryptographic operations introduces more
[ |
: ‘ : Overhead. | 7x7 conv, 64 | /// mConv 1: 1.9 ms mReLU 1: 193.3 ms
l : . y pool .~ mConv2:32ms  EReLU2:193.3 ms
I [ Bottleneck, 256 & B Conv 3: 2.4 ms B Conv 4: 2.4 ms
AN I:f"_del | | ; i mAdd1:0.1ms  WReLU 3:772.2 ms
\_lell_OL_‘ ———— '__-_-“_—_‘—‘_‘_—_“‘—_" Bottleneck,256‘o_
Y v 1=}
Data Kept Confidential Bottleneck, 256 [ i
: v
Fig. 1: Two-party secure computing (2PC) deployment. cfg[1] blocks | }
L 2
cfg[2] blocks
¥
cfg[3] blocks
¥
’ [ fc, 1000 ] %
*¢ ReLU operator has much longer latency than Conv (a) ResNet50 blocks ~ (b) Bottleneck block  (c) Time consumption breakdown
. . . Lantecy breakdown under 2PC PI setup. Network
** Hardware & software technlques arc requlred for secure banwidth: 1 GB/s. Device: ZCU104. ResNet50 on ImageNet

privarate inference (PI) acceleration. 16



Background: MPC Basics

An example of 4-bit plaintext vs. ciphertext evaluation.

According to the additive share  : : . : st o :
and two-party setting, assuming a matrix multiplication over  : / Cllent \ P / Cllent \
gt (VD) nd weiht (V- foUr] - Mol (| B | N T ——
produces a new secret shared value - iy ), . 2 . -
such that rec([OUT]) = rec([IN]) @ rec([W]). In this prjo- : SCT Query i SCT Query -4 | -4 lno AO 3 4 -8 | -4 ZO esult
cess, we need two masks [E] and [F] to assist each party’s  : _m i > 1 |:> |:> -4 | -4
computation, i.e., hide the secret information of [/N] and [W] : s B N e e U S
by using pre-computed multiplication triple [A], [B], and [Z], : Re Sult s -31-5 2 4 l@ \‘I & ﬁ .
where [Z] = [A] - [B]. The three secret shared matrices of  : s W 0 ‘B 0 i 7 1 I ¢, -8 |:>
trple are [A] + (41, ). [B] (B, B,). and [Z]  (Z,Z,). .  § 51 V5|0 tE el B 1 |
Initially, each party computes [E] = [fIN]] —[A] and [F] = : \ / s \ : i mo E O i
[W] — [B]. Then both parties jointly recover E < rec([E]), : o - 1 4 > g 10N
and F < rec([F]), and each party computes Eq. 1, the so- ;- =1 B . - r L
called Beaver multiplication triples [4] adopted by many : / Result MOdel:W\ S / ModeT: w 2 5 |3 A 4 | -2 i F 1 0 : O \
other relevant works like Crypten [29], CryptGPU [50], ABY >O‘) P mn; Ay i S|l & IZ> — |
[15], and ABY2 [43]. Taking party i as an example, OUT; : | 1M1 [ 1] = - i 'c§’ 7
will then be treated as the secret share for [OUT]. Typically, : = |:> ‘a p: | T '
the multiplication triple can be generated using homomor- Ty Sum 3 6 -6 | -1 | N -
phic encryption [58] or with oblivious transfer (OT) [28]. ~ 5 Wl B 1 4 > G 3 Z |:> 6 1

- . - 1 I
H E 1
......................... 2PC-Matmul ’ )

OUT; = —i-EQF +IN;@F +E®QW;+Z; (i€ {0,1}) (1)

Plaintext Evaluation, user X Not safe! Ciphertext Evaluation, protection for both
query revealed to vendor oL sale: user query & vendor’s model ~/ Safe!

2PC-OT Processing Flow:

2PC-Oblivious Transfer (OT) --

foundation of secure

comparison (ReLU) _
. @D Server 0 (S)) generates a rar:jc(li(?m integer rds,, and @ Server 0 (Sy) received R, it will first
Multiple rounds of compute mask number S W,lth S = g"%% mod m, then shares  generate the encryption keyo(y,u) = R(y,u) @
o S with the Server 1 (Sy). (Sb24Ma (v ) +1 mod m)™¥so mod m. The Sy also generates
communication . ; _ ; is comparison matrix for it’s Ma with 32-bit datatvpe and

@ Server 1 (S5;) received S, and generates R list based U = 16 parts,

n S5¢’s 32-bi set M, and then send them to Sy. Each
gleméngt ?)f _tl)\/_; 1d?;a:g{it inlto aUd:t %6 tg)zrg.ttgus anachonaretlcis @ Server 1 (Sl) decodes the interested encrypted massage

Reducing ReL.U is essential
g ol by keyy = S™¥s0 mod m in the final step.
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Crypto-Friendly Neural Architecture Co-search

7

; . ioahle . ; - Qor . D
Algorithm 1b D‘ii:erentm:]lc Zo]ynomml /:rchltectum Search. Target: Hardware l’)OOl Network info 2PC op. pool Backbone model zoo
Input: Mj;: backbone model; D: a specific dataset
Lat(OP): latency loop up table; H: hardware resource Latency, accuracy, (BandWIdth latenc Xzact Conv
Output: Searched polynomial model M, C] non- pOly — cee
1: while not converged do cenergy... ] POOl
2: Sample minibatch z;,,, and z, from trn. and val. dataset L . poly a
3 /I Update architecture parameter c: VY VYV YVvV YV v
4:  Forward path to compute (irn(w, ) based on Zirn
5. Backward path t cml;pmc i = Parplusa) @ 2PC operator latency modeling & benchmark
6 Virtual step to compute w’ = w — £dw I I I I *
7 Forward path to compute (pai(w’, @) based on x4 .. "
8 Backward path to compute o/ = Zoualle o) K @ Hardware aware NAS for pr ate inference 2 party Setup for Pl \
0. Backward p,',{th to c()mputc (sw _ l"—’-—‘%—(‘;;',—“l e \ Constructed SuperNet ) Model 1 A " h I En S = - . e -\‘
10:  Virtual steps to compute w' = w + £éw’ 4B 5 > i Enc. Com putatlon "
11:  Two forward path to compute Ciyr(w ', o) L= LCE + }LZa,Lat(Bi) | 8 N«S L g RGN . 1
12:  Two backward path to compute o' = Zotrnle ) > < - \ . g I
| B et s e ( ) aram update: (& a3 = I
13:  Compute hessian do” = == | del 1
14:  Compute final architecture parameter gradient da = da’ — . Model 2 l
f(s(l"’ > I - =
15:  Update architecture parameter using o with Adam optimizer > / @\i = Bl k < I‘Chl update I g N% 8 N g
5 ] o| Bloc
16:  // Update weight parameter w: g Eé BlOCk3 0.6 g N«S 6 0.7 aram update I &U o 9@
17: Forward path to compute (;n (w, (3) ba(scc(l‘ on Tyrn O (§< Lat(B%) Q >< Lat(BG) : MOdel 3
18:  Backward path to compute dw = “—“”’ = — S & (i —
19:  Update architecture parameter using ()w with SGD optimizer -chi >l ol —= >
20: end while - Selected block archi update . g K 8 N g
Obtain architecture by OP(z) = OP i+(x), st. k¥ = - Unselected block Until Converge| o<l 2l |o
argmax;, 0y K L )
o,

)

» The search algorithm uses
hardware latency modeling as

input for loss function - 2PC-MaxPool O tor
< Trainable X2act Non-linear C-MaxFool Operato

Function 2PC-X2act Operator
« Operator Modeling and Latency-

Analysis 2PC-AvgPool Operator

*

*

- 2PC-Conv Operator 48



Results

mm All ReLU baseline mmm 41 w42 mem 43 w14 mm All poly mm All ReLU baseline mmm A1 wem 12 mem 3 mem 4 e All poly
103

N -]

O = o Lo L

....................

- 240/ .
Less than 0.34% acc. drop_ i' { 20 % 