Discrete/COTS waveform readout FEB for backward ECAL

G. Visser

Indiana University

requirements and characteristics - for discussion / correction

- 24 channel assembly
- dimensions: $<18 \times 12 \times 1.5 \mathrm{~cm}^{3}$
- power: $<120 \mathrm{~mW} / \mathrm{ch}$ ($2856 \mathrm{ch}: 343 \mathrm{~W}$)
- ADC: 14 bit, 39.4 MSPS ($2 / 5$ clock) or 32.8 MSPS (1/3 clock)
- peaking time: 4-5 samples
- number of samples taken: 8 (likely; adjustable)
- SiPM capacitance: 10 nF
- SiPM gain: 1.8-3.6×105 (TBD)
- light yield: 5.5 pixels/MeV (expected, TBC)
- signal range: 5 MeV (threshold) to 20 GeV [1.6 pC to 6.3 nC @ highest gain]
- SiPM DCR (after irrad.): TBD
- dark counts in pulse: TBD (roughly peaking \times DCR)
- linearity (electronics only): 0.1\%
- rate capability: TBD ($50 \mathrm{kHz} / \mathrm{ch}$?)
- rate capabity: TBD (50 kHz/ch?
- timestamp size: 24 bit (340 ms rollover)
- rollovers marked in datastream
- total hit data size: 144 bits (or less, w/ feature extraction, perhaps)
- max output (to RDO) data rate: $40 \mathrm{MB} / \mathrm{s}$
- data cable: Cat6 or similar, <30 m
- SiPM bias control: per channel DAC, 33-47 V range, $<10 \mathrm{mV}$ stability, low noise $<1 \mathrm{mV}$, fast recovery
- SiPM bias compensation: per channel thermistor, common slope DAC
- SiPM bias current monitor
- SiPM - FEB cable length: $\leq 60 \mathrm{~cm}$ TBD, micro-coax
- input supply monitor
- on-board LV DC/DC, 10 - 13 VDC input

Block diagram

COTS ADC + FPGA, or equiv. ASIC

EEEMCAL front-end electronics and cooling

No lack of integration space for electronics, l'd say.
It will be good to keep most electronics to the periphery, as planned/shown, to minimize radiation damage and to ease cabling.

12 electronics assemblies

FEB mechanical \& cooling

 cooling for FEB assy 6 loops, 2 assy in series 57 W per loop- Thermal insulation all around between FEB and crystal support \& thermal structure
- Separate liquid temperature control loops for crystals \& FEB's
- Preamp power on SiPM board must be / will be mimized
- maybe 0 ?
- But, radiation damaged SiPM's will dissipate some heat:
- e.g. 95 W @ $200 \mu \mathrm{~A} /$ SiPM...
$12 \times$ FEB assy, $9-10$ FEB each (119 FEB total, 2856 ch) $18 \times 12 \mathrm{~cm}$ in this view (excl. coldplate)
liquid for crystal array

Crystals
2852 crystals

Cooling plate

Copper plates Mechanical structrue
thermal insulation

FEB mechanical \& cooling
water-cooled aluminum plate.
with slots for boords \& wedgelocks

CIRCLE OF DIA. 123 cm (for ref. represents rough outline of crystal amay

FEB, obout 18 cm (in depth into view here $\times 12 \mathrm{~cm}$), possibly with mezzanine PCB for bias control circuits.
$11 * 10+1 * 9=119$ FEB
$24 \mathrm{ch} / \mathrm{FEB}$
2856 ch total

modular, reliable cooling and mounting connection
aluminum plate (bolted to copper)

FEB

FEB layout sketch

ePIC bwd ECAL woveform readout FEB
ayout floorplanning sketch
G. Visser 8/15/2023
shown with STAR fwd ECAL FEB

1 FPGA (Polarfire) 6 quad ADC's
inside radius edge - cables to SiPM boards

Closing remarks

- There seems to be plenty of room for FEB in the already planned scheme behind the crystal array and SiPM boards
- Adapting the discrete/COTS waveform readout as now being developed under eRD109 for forward ECAL to this case is straightforward enough
- If agreed, we should start to think about how to make this happen
- Main change is the remote (60 cm) SiPM board. The baseline strategy should be to try to avoid needing a preamp on the SiPM board.
- A 24 channel or perhaps 32 channel FEB looks most sensible
- Risk of impacting crystal temperature control is (I think) minimal
- Can't forget about heat from radiation-damaged SiPM's though...
- As in the forward ECAL case, replacement of the COTS ADC and FPGA by an ASIC offering an equivalent architecture \& performance at lower cost and power would be great. Perhaps it's a possibility (e.g. several SBIR efforts underway).

