

Opportunities in the EIC 2nd detector program

Jihee Kim and Cheuk-Ping Wong jkim11@bnl.gov, cwong1@bnl.gov on behalf of the BNL EIC 2nd Detector Group

09-26-2023

BNL LDRD Program

- Strengthen case for the EIC 2nd detector
 - Cross-checking
 - Cross-calibration
 - Broaden physics program
- Provide a realistic detector concept
 - Complementary to ePIC in terms of physics reach, precisions and systematics
 - Suggestions on new and developing technologies

BNL EIC 2nd Detector Group

ep & eA Physics + Conceptual Detector Design

Elke Aschenauer, Alexander (Sasha) Bazilevsky, Xiaoxuan Chu, Oleg Eyser, Alex Jentsch, Jihee Kim, Alexander Kiselev, Akio Ogawa, Brian Page, Bill Schmidke, Zhoudunming (Kong) Tu, Thomas Ullrich, Cheuk-Ping Wong, Zhang Zhengqiao

Blue: members of BNL EIC 2nd Detector LDRD

Physics Programs

	Measurement	Physics	Requirements and Challenges
BNL LDRD scope	Double polarized e+D	Transversity in transverse polarized eD collisions →gluons' role in nuclear binding	
	Positron beams	 Providing electro-weak data for fundamental studies: quark axial and vector couplings Extends the capabilities of the physics with exclusive measurements 	As for electron beams
	Real photon beams through Compton scattering	Enables the generation of a polarized real photon beam →understanding the formation of for example new charmed mesons via spectroscopy measurements →a full complementary approach to LHCb and Belle-II	TBD
	2nd focus integrated in the IR	Soft particles down to $p_T \sim 0$ GeV \rightarrow new understanding of the structure of nuclei	Extended auxiliary detector capabilities
	Fixed targets	Access to very high x physics \rightarrow complementary to STAR, LHCb and ALICE	Acceptance for fixed target kinematics

Physics Programs

Target to facility upgrades

	Measurement	Physics	Requirements and Challenges
BNL LDRD scope	Double polarized e+D	Transversity in transverse polarized eD collisions →gluons' role in nuclear binding	
	Positron beams	 Providing electro-weak data for fundamental studies: quark axial and vector couplings Extends the capabilities of the physics with exclusive measurements 	As for electron beams
	Real photon beams through Compton scattering	Enables the generation of a polarized real photon beam →understanding the formation of for example new charmed mesons via spectroscopy measurements →a full complementary approach to LHCb and Belle-II	TBD
	2nd focus integrated in the IR	Soft particles down to $p_T \sim 0$ GeV \rightarrow new understanding of the structure of nuclei	Extended auxiliary detector capabilities
	Fixed targets	Access to very high x physics \rightarrow complementary to STAR, LHCb and ALICE	Acceptance for fixed target kinematics

Physics Programs

	Measurement	Physics	Requirements and Challenges
BNL LDRD scope	Double polarized e+D	Transversity in transverse polarized eD collisions →gluons' role in nuclear binding	
	Positron beams	 Providing electro-weak data for fundamental studies: quark axial and vector couplings Extends the capabilities of the physics with exclusive measurements 	As for electron beams
	Real photon beams through Compton scattering	Enables the generation of a polarized real photon beam →understanding the formation of for example new charmed mesons via spectroscopy measurements →a full complementary approach to LHCb and Belle-II	TBD
	2nd focus integrated in the IR	Soft particles down to $p_T \sim 0$ GeV \rightarrow new understanding of the structure of nuclei	Extended auxiliary detector capabilities
	Fixed targets	Access to very high x physics \rightarrow complementary to STAR, LHCb and ALICE	Acceptance for fixed target kinematics
Consensus from Temple Meeting	Diffractive dijet	Wigner Distribution	forward scattered proton/nucleuslow pT particles
	DVCS on nuclei	Nuclear GPDs	forward scattered proton/nucleusHigh-resolution photon
	Baryon/Charge Stopping	Origin of Baryon number in QCD	•PID •low pT π/K/p
	F2 at low x and Q ²	Probes transition from partonic to color dipole regime	•Maximize Q ² tagger down to 0.1 GeV ² •integrate into IR.
	Coherent VM Production	Nuclear shadowing and saturation	High-resolution tracking for precision t reconstruction

Concepts for Muon ID

Arguments

- Heavy quarkonia $\rightarrow \mu + \mu$ in exclusive measurements
 - Cleaner signal in quarkonium reconstruction compared to di-electron
 - Reduce ambiguity to the scattered electrons
 - Gluon distributions
 - Proton mass trace anomaly using near-threshold production measurements
 - Hadronization
- Potentially DVMP / TCS → Nuclear GPDs
- Complementary to ePIC: quarkonium reconstruction with different decay channels
- Cross-checking with ePIC

Concepts for Muon ID

How to proceed

- Muon kinematics \rightarrow Identify detector coverage
- Example muon ID technology: KLM at the B factory in KEK Can KLM provide calorimetry performance?

EIC Generic R&D programs: #18 KLM-type detector

>90% muon efficiency at 1.7<p<4 GeV

EIC Detector II Meeting

Concepts for the 2nd Focus

Requirements

High rapidity acceptance and low $p_{\tau}\xspace$ tracking

Energy Vs Pseudo-rapidity

Energy Vs Pseudo-rapidity

Concept of Low-Q² Measurements

<u>Arguments</u>

Probe the transition of perturbative to **non-perturbative QCD** $\rightarrow 0.1 \le Q^2 \le 2 \text{ GeV}^2 \text{ coverage}$

ePIC limitations

- Limited acceptance of crystal endcap calorimeter
- Realistic estimated rapidity down to $\eta \sim -3.5$ or $Q^2 = 1$ GeV² Low-Q² tagger covers from < 0.1 GeV²

Discussions within the Community

Miguel suggested backward calorimeter close to the beam pipe

Concern of thick material budget from the beam pipe

This is a tricky one that requires full simulations with mockup beam pipe

Arguments

- high x and low Q²
- Complementary to CLAS12 measurements and other JLab experiments
 - $\circ \quad \text{DVCS} \rightarrow \text{nuclear GPD}$
 - \circ Spin physics with polarized gas target
- Complementary to fixed-target measurements at STAR, LHCb and ALICE
 - \circ Constrain nuclear PDFs
 - Parton fragmentations
 - Nuclear shadowing

Kinematics at fixed target is very different from one at colliding beams:

Everything goes backward

- Fixed-target setup along with beam-beam collisions configurations
 - LHCb SMOG simultaneous beam-beam or beam-gas-target collisions
 - STAR gold target inside beam pipe
- Detector subsystems needed
 - Full range (backward+central+forward) tracking system
 - Backward EMcal to measure scattered e⁻
 - e/h separation (PID) in backward region for hadron fragments with pfRICH?

Figure 1. Photo of the gold target and its support structure.

doi:10.1088/1742-6596/742/1/012022

- Questions
 - Luminosity and statistical feasibility
 - Kinematics of fixed-target events
 - Material budget due to the beam pipe
 - Machine induced background

Larger pseudorapidity coverage depends on the IP location

EIC Detector II Meeting

- Fixed-target setup along with beam-beam collisions configurations
 - LHCb SMOG simultaneous beam-beam or beam-gas-target collisions
 - STAR gold target inside beam pipe
- Detector subsystems needed

ookhaven

National Laboratory

- Full range (backward+central+forward) tracking system
- Backward EMcal to measure scattered e[−]
- e/h separation (PID) in backward region for hadron fragments with pfRICH?

- Questions
 - Luminosity and statistical feasibility
 - Kinematics of fixed-target events
 - Material budget due to the beam pipe
 - Machine induced background

https://doi.org/10.1051/epjconf/202225913010

- Fixed-target setup along with beam-beam collisions configurations
 - LHCb SMOG simultaneous beam-beam or beam-gas-target collisions
 - STAR gold target inside beam pipe
- Detector subsystems needed

National Laboratory

- Full range (backward+central+forward) tracking system
- Backward EMcal to measure scattered e[−]
- e/h separation (PID) in backward region for hadron fragments with pfRICH?

• Space for polarimeter?

Hermes target cell with the Breit Rabi Polarimeter

Summary: Concepts for the 2nd Detector

measurements / observables	Arguments / Physics	Detector subsystem(s)	Tasks
Muon	 Quarkonium→µµ Gluon distribution, proton mass, hadronization Potentially TCS → Nuclear GPDs Provide cleaner channel compared to di-electron Complementary to and cross-checking with ePIC 	Muon ID e.g. KLM	 Muon Kinematic distributions Muon ID performance Statistical feasibility
Scattered electrons	 Complete exclusive measurements in low-Q² regime Probing the transition from perturbative to non-perturbative QCD 	low-Q ² tagger	Extended auxiliary detector capabilities
 DVCS Coherent VM Production Diffractive dijet 	Low p _T and high rapidity coverages to reach small x • Nuclear GPDs • Nuclear shadowing & saturation • Wigner Distribution	Secondary focus (far-far-forward)	Extended auxiliary detector capabilities
Scattered electron and fragments in forward region in fixed target	 high x and low Q² Complementary to CLAS12 DVCS → nuclear GPDs Complementary to STAR, LHCb and ALICE nPDF, parton fragmentations 	Fix target cell Tracking EMcal PID	 Acceptance for fixed target event kinematics Statistical feasibility Tracking system EMcal performance for scattered high energy electron Backward e/h separation up to 18 GeV

Current Study using Delphes

- Created ePIC detector configuration card using parameterizations (tracking and calorimetry resolution/efficiency and PID)
- Limits: Hard to evaluate effects of magnetic field/material

Plans

Move on to DD4HEP or other full simulation softwares

- Lookup kinematics distributions of ep/eA events
- Setup detector simulations using existing ePIC softwares
- Run full simulations
- Determine physics benchmarks
- Determine detector configurations

Backup

Available Simulated Events/ Event Generators

From detector proposal:

- https://wiki.bnl.gov/eicug/index.php/ECCE_Simulations_Working_Group
- <u>https://dtn01.sdcc.bnl.gov:9001/buckets</u>
- Cavet: different crossing angles

eA event generators

- BeAGLE
- eSTARLight

DVCS Kinematics

Brookhaven

National Laboratory

