Exclusive, Diffractive and Tagging Meeting

Coherent VM production

18 September 2023

Study is ongoing within the eA Study group (Kong Tu et al.) Zvi Citron¹, Eden Mautner¹, <u>Michael Pitt</u>^{1,2} ¹Ben Gurion University of the Negev (Israel) ²The University of Kansas (USA)

Goals

- Probing the low-X structure of the nucleus
- Probing spatial parton structure of nuclei

Methodology

- Measuring coherent vector meson (VM) production
- Differential cross-section $(d\sigma/dt)$ as a function of momentum transfer \rightarrow spatial distributions of gluons

Coherent and incoherent production

Event Kinematics

- Reconstruction of parameters of interest:
 - e incoming electron (determined by beam parameters)
 - e' outgoing electron (measured)
 - *VM* vector meson (measured)
- Energy scale Q2 = -(e e').M2()
- Momentum transfer -t = (VM (e e')).M2()
- Meson transverse momentum VM_PT=VM.Pt()

Coherent and incoherent production

Event Kinematics

- Reconstruction of parameters of interest:
 - *e* incoming electron (determined by beam parameters)
 - e' outgoing electron (measured)
 - *VM* vector meson (measured)
- Energy scale Q2 = -(e e').M2()
- Momentum transfer -t = (VM (e e')).M2()
- Meson transverse momentum VM_PT=VM.Pt()

The main background is $e + A \rightarrow e' + A' + VM + X$, with $A \neq A'$

Selected (past) studies

• Coherent and incoherent J/ ψ photoproduction in PbPb collisions at the LHC, HE-LHC

- Expected large rates
- Tagging of coherent events is a subject of ongoing studies (M.Pitt@LowX2023)

Selected (past) studies

• Coherent J/ ψ photoproduction at forward rapidity in PbPb UPC (<u>1904.06272</u>)

- Expected large rates
- Observing the dips requires suppression of incoherent process

Selected (past) studies

• Exclusive diffractive processes in electron-ion collisions (<u>1211.3048</u>):

Target Q²>1 GeV² – backward electron reconstruction

Selected (past) studies

• Investigation of the background in coherent J/ ψ production at the EIC (2108.01694):

- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;
- Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

Strong background rejection with FFD at the EIC

18 September 2023

Selected (past) studies

Peter Steinberg talk @ EICUG Theory WG meeting

• Challenges in measurements of exclusive J/ψ at the EIC

Selected (past) studies

Peter Steinberg talk @ EICUG Theory WG meeting

- Challenges in measurements of exclusive J/ψ at the EIC

Selected (past) studies

Peter Steinberg talk @ EICUG Theory WG meeting

• Challenges in measurements of exclusive J/ψ at the EIC

Simulation setup

Event generation

- Simulation with eStarlight¹: $e + A \rightarrow VM + e' + A'$
- Ions: ¹⁶O, ⁶³Cu, ⁹⁰Zr and ²⁰⁸Pb
- Vector mesons: rho, omega, J/psi, Phi, Upsilon
- Consider different energies: 5x100 GeV² and 18x275 GeV² (energies of the accelerated electron and proton beam respectively)

Event Reconstruction

Using npsim detector simulation with World material = Vacuum (Solution for z<40m exists IN VALIDATION)

M. Pitt

• Using *eicrecon* with <u>266-integrate-lowq2-tagger-reconstruction</u> (thanks to Simone Gardner)

Momentum transfer and Q2

Q2 dependence

- Q² is correlated with outgoing electron rapidity.
- Only for low Q, VM pT is correlated with the t
- Can we measure backward electron to reach a low Q?

eStarLight Simulation

Work in progress

10³

M. Pitt

ePb 18×110

 $Q^2 < 0.01$

Event Selection

- 3 track events (with 2 tracks in $|\eta| < 4$)
- VM mass window of 0.4 GeV in di-µ events
- Veto activity in forward region (reco/hits):
 B0 tracks, B0 clusters, OMD tracks, RP tracks,
 ZDC WSi, Sci, PbSi, Hcal, Ecal hits

Signal efficiency for different Q² regions:

Cut	1GeV <q²<10 gev<="" th=""><th>Q²<10 GeV</th><th>Q² < 0.01 GeV</th><th></th><th>Cut</th><th>Q²<10 GeV</th></q²<10>	Q ² <10 GeV	Q ² < 0.01 GeV		Cut	Q ² <10 GeV
3 tracks	0.975253	0.483794	0.54398		3 tracks with $ \eta < 4$	0.088701
VM mass cut	0.927652	0.463216	0.523327		2 tracks with $ \eta < 4 \&\&$	0.394873
Veto FFD / ZDC	0.927399	0.463152	0.523256		1 track with η<-4	
Veto FFD	0.892045	0.445142	0.50276			

Event categorization

- Depends on the electron reconstructed eta
 - Central detector: ~10% of all Q²<10 GeV
 - Low-Q2 taggers: ~40% of all Q²<10 GeV

Event Kinematics

Reconstruction of parameters of interest:

- *e* incoming electron (fixed)
- e' outgoing electron (measured)
- VM vector meson (measured)
- Momentum transfer -t = (VM (e e')).M2()

Adding the low-Q2 region extends the phasespace to probe the coherent VM production

M. Pitt

t reconstruction

- Momentum transfer -t = (VM (e e')).M2()
- Reconstruct electron + VM (from tracks)
 - Impact from electron reconstruction
 - Impact from VM reconstruction
- Large experimental resolution
 - Observed in both categories (low/high Q2)

t reconstruction (method L)

- Add Pb mass constrain (from Kong link):
 - Better modeling of the t variable
 - Larger effect from VM reconstruction
 - At low Q, electron do not have an impact

VM PT reconstruction

- At low Q, t can be approximated as VM PT
 - Impact from VM reconstruction
- > The dip seen at the generated level
 - Only low Q2 category can be used
 - Work ongoing VM pT resolution

Background rejection

Backgrounds

- The main background is incoherent VM production
- Modify the strategy (from object rejection to signal rejection)
- Work by Eden Mautner (in progress)

• Veto.7: Veto.6 and no photon with E > 50 MeV in ZDC.

Summary and discussion

Summary

- Coherent vector meson production is a promising channel for studying gluon structure functions of nuclei and is sensitive to gluon saturation effects
- Measurement benefits from the extensive Far-Forward/Far-Backward detectors
- What is new:
 - ✓ Low Q taggers better t reconstruction, extended phase-space
 - Background suppression studied based on most resent detector simulation
- Work in progress:
 - t reconstruction / background studies

Selected (past) studies

- Coherent and incoherent J/ ψ photoproduction in PbPb collisions at the LHC, HE-

LHC and FCC (2007.13625):

- Expected large rates
- Observing the dips in coherent events is a subject of ongoing studies

eStarlight setup

TARGET BEAM Z = 82 #Z of target TARGET BEAM A = 208 #A of target ELECTRON BEAM GAMMA = 35295 #18 GeV electrons from eRHIC TARGET BEAM GAMMA = 115.8 #275*82/208 GeV/n Pb from eRHIC W MAX = -1 #Max value of w from HERA W MIN = -1 #Min value of w from HERA **Modified** parameters W N BINS = 50 #Bins i w EGA N BINS = 400CUT PT = 0 #Cut in pT? 0 = (no, 1 = yes)PROD MODE = 12 # coherent vector meson (narrow) PROD_PID = 443013 # J/psi production RND SEED = 1 #Random number seed, change when producing multiple output files BREAKUP_MODE = 5 #Controls the nuclear breakup; a 5 here makes no requirement on the breakup of the ions PYTHIA_FULL_EVENTRECORD = 1 # Write full pythia information to output (vertex, parents, daughter etc). MIN GAMMA Q2 = Q2MIN #change this parameter MAX GAMMA Q2 = Q2MAX #change this parameter QUANTUM GLAUBER = 1 # Do a quantum Glauber calculation instead of a classical one SELECT IMPULSE VM = 0 # Impulse VM parameter OUTPUT FORMAT = 0 # 0 – Standard, 1 - Pythia, 2 - HEPMC

Cross-sections

Different mesons

• All vector meson production processes show the same t spectra, J/psi has the highest cross-section.

Cross-sections

Different beam energies

- Similar cross-section for high t
- High energy configuration more sensitive to Q2~0

Momentum transfer

Different mesons at low Q2

• Similar spectra for different VM

Beampipe volume

Status

- Vacuum modeled up to Z=40
- Need to stop the simulation for

Z>40m

Event categorization

Reconstruction of Q2

18 September 2023

Electron reconstruction

- > Coherent J/ψ photoproduction in ePb collisions, Simulation with *npsim*, reconstruction with *eicrecon*
- > Left: Old (two month ago), using Air as world material; Right: New (two days ago), using Vacuum

Electron reconstruction

- > Coherent J/ψ photoproduction in ePb collisions, Simulation with *npsim*, reconstruction with *eicrecon*
- > Left: Old (two month ago), using Air as world material; Right: New (two days ago), using Vacuum

