

BIC TEST BEAM PLANS

HENRY KLEST

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

TEST BEAM R&D GOALS

- Benchmark detector performance in as realistic a configuration as possible with different beams at FNAL
 - Demonstrate ability to operate AstroPix & SciFi in tandem
 - Study e/ π separation and overall π response
 - Characterize SciFi energy resolution & linearity at higher energy than GlueX
 - Gain operational experience with the specific
 SiPM options to be used in ePIC BIC
- All of the above highlighted by comprehensive detector review report

GENERAL SETUP

- Add BIC prototype calorimeter behind existing Argonne ATLAS Pixel telescope with AstroPix setup at MTest
- Rotating stage to simulate particles incident at angles up to 45° (η~1)
- Ability to lower BIC setup out of the beam, no need to uninstall for other experiments to run
 - Proximity to Argonne enables occasional opportunistic running

Current ANL AstroPix Planned BIC Setup Telescope Setup

3

GLUEX BCAL PROTOTYPE

- Thick SciFi portion of BIC approximated by the GlueX prototype
 - Studied in March '23 with positrons in Hall-D PS
 - Cosmic data taken in Hall-D, currently under analysis
 - More cosmics planned at ANL prior to installation at FTBF
- Overall well understood system!

- Start with GlueX BCal prototype with one AstroPix v3 quad in front
- Prior to installation at FTBF:
 - Characterize AstroPix v3 Quad sensor on the bench, noise scans, calibration, etc.
 - Take cosmics with GlueX prototype at ANL
 - Gain a good understanding of both systems individually

- Once beam is available, work on combining information between the systems
 - Bringing the two detectors into time coincidence
 - Use AstroPix hit position information to seed clusters in the SciFi
- Test response of SciFi at different incidence angles

- Add thin layer of SciFi from GlueX
 - Layers of SciFi in thickness similar to ePIC already exist, currently no SiPMs attached
- Opportunity for testing of SiPMs planned for use in the final design
 - Protons to test response to MIPs
 - Measure pulse shape & timing response with fast electronics

- Add second thin layer of SciFi
 Approach ePIC design
- Test e/π separation with mixed beam
 - Run at low rates to avoid pile up in SciFi
 - Possibility with AstroPix to tag two-particle events
 - Use FTBF beamline instrumentation to tag electrons
 - Possibly tag hadronic showers with detectors behind BCal

SciFi Insert Layers

- Test energy resolution & linearity up to 32 GeV
 - Near upper limit of what will be seen at EIC
- Second (downstream) SciFi layer _____ should see significant energy deposits from 32 GeV electrons (especially at large angles)
 - Allow for characterization of ePIC
 BIC SiPMs with large N_{Ph}.

WENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. 10

SciFi Insert Layers

AstroPix v3 Quad

ANTICIPATED TIMELINE

- FTBF Beam schedule highly uncertain, original estimated schedule:
 - Stage 1: Setup prior to beam, Estimated Winter '23
 - Stage 2: Estimated Spring '24
 - Stage 3: Estimated Summer '24
- If only Spring '24 is available, can try to use cosmics to interleave AstroPix & Bcal information (approximate stage 1), skip stage 2, and go directly to stage 3
- Any information regarding the FTBF schedule would be helpful, we are meeting to discuss our plans after this meeting
- Aside from beam test, various construction activities planned for FY24
 - Lab space being acquired at Argonne for testing of SciFi construction equipment

BACKUP

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

Parameter	Specification	Notes
	3 mm x 3 mm	
Active Area	(4 x 4 array)	Preassembled array covering 1.2cm x 1.2cm
Pixel Size	50 µm	
Package Type	Surface Mount	
Peak Sensitivity	450 nm	
PDE	~ 50%	
Gain	>~2 x 10 ⁶	
	Typ.: ~ 500kHz / SiPM	
DCR	Max: < 1.5 MHz / SiPM	DCR applies to each SiPM in the 4 x 4 array
Temperature coefficient of Vop	< 40mV/C	
Direct crosstalk probability	< ~ 7%	
Terminal capacity	~ 500pF / SiPM	Applies to each SiPM in the 4 x 4 array
Packing granularity		
Vop variation within a tray	< 200 mV	
Recharge Time	< 100 ns	
Fill Factor	> 70%	
Protective Layer	Silicone (n ~ 1.5-1.6)	

TABLE 1: Barrel Imaging Calorimeter SiPM Specs

