

16 Oct 2023

Yulia Furletova (JLAB)

Outline

- Requirements & integration aspects
 - Low-Q2
 - Lumi
 - Far-forward

3D view

- □ Far forward and far backward detector components are distributed along the beam line within +/- 50 m
- In total 7 sub-detectors (12 sub-components) => Maximizing synergies between different sub-detectors as much as possible, but keeping performance

Far-forward area

Far-backward area

Many international groups and institutions are participating
 Weekly meetings to discuss engineering and integration aspects with JLAB/BNL designers, collaborating institutes

Electron-Ion Collider

p/A

Far-backward (electron-outgoing) region

- > This area is designed to provide coverage for the low-Q² events (photoproduction, $Q^2 < \sim 1 GeV^2$). Need to measure a scattered electron position/angle and energy
- > And luminosity detector (ep -> e'p γ bremsstrahlung photons)

Low-Q2 tagger: requirements

✓The Low- Q² detectors need to measure the energy and position of the scattering electrons with Q² below 1GeV² in the far-backward directions.

- ✓The acceptance for the low- Q² tagger should complement the central detector to reach the coverage close to the limit given by the divergence of the beam. => two stations to cover the maximum acceptance
- ✓Low-Q2 system should have a **good position resolution**(beam effects are included into the simulation) (momentum resolution < 5 %) => up to 4 Si tracking layers ✓Calorimeter shall provide an electron energy resolution: $\sigma(E)/E < 10\%/\sqrt{E} + 3\%$
- ✓LowQ2 system must operate at a full projected EIC luminosity and must be resistant to extreme background conditions (synchrotron radiation, bremsstrahlung)

✓Should have a capability to handle high rate (10 electrons per bunch crossing)

FIG. 16: Coverage in Q^2 for tagger detectors and ECAL.

Low-Q2 detector assumptions.

			current P6 configuration	
	CD1	Detector proposal 1	Detector proposal 2	ePIC
Dimensions	Tagger1: 40x40 cm^2	Tagger1: 40x40cm^2	Tagger1: 40x40 cm ²	Tagger 1 and Tagger 2 :
	Tagger 2: 30x20cm^2	Tagger 2: 30x20cm^2	Tagger 2: 30x20cm^2	ca 15x18cm^2
Tracker technology	LGAD	Tagger 2: 30x20cm^2	AC-LGAD	Timepix4
		Si (AC-LGAD)	500um pixels	55um pixels
			30ps	2ns
				high rate capability 20kHz/pixel
CAL technology	PbWO4 (2x2x20cm^2)	Spaghetti W-calorimeter with radiation-hard scintillating fiber, read out with fast PMTs	PbWO4 (2x2x20cm^2)	W/SciFi (the same as for lumi PS)

Low-Q2 taggers

- Two tagger stations with 4 Si-stations 30 cm apart and a calorimeter behind.

Tracker: Timepix technology

Rate capability is very high ~20kHz per 55um pixel
 Calorimeter: PbWO4 (or similar to PS-lumi) — allows essential cross calibration of tracker and luminosity system during low current runs

Low-Q2: tagger1

• CAD layout with dimensions are based on the actual Timepix module design

 Cables and cooling pipes are included. Support stand and movable station for position adjustments

Low-Q2 taggers: integration

•Placement : outside of the primary vacuum

• But Timepix is designed to operate under 10-6mbar vacuum => working on possible setup with detector sitting in the secondary vacuum to minimize the material in front.

Luminosity system: requirements

Electron-Ion Collider

✓ To measure integrated luminosity with precision δL/L< 1%</p>

pair spectrometer:

≻Low rate (due to conversion)

High precision measurement for physics analysis : the PS CAL energy resolution for

electrons shall be $\sigma(E)/E < 15\%/sqrt(E)$

- The PS CALs, direct CAL, and trackers shall all provide timing resolution sufficient to resolve 10ns beam buckets
- The calorimeters are outside of the primary synchrotron radiation fan

zero degree photon calorimeter

- ≻high rate
- ➤Fast feedback for machine tuning
- measured energy proportional to # photons
- \succ the CAL energy resolution for
- electrons shall be $\sigma(E)/E < 15\%/sqrt(E)$
- ≻subject to synchrotron radiation

9

Lumi detectors

			current P6 configuration	-
	CD1	Detector proposal 1	Detector proposal 2	ePIC
Dimensions	15x15x20cm^3	20x20x20cm^3	16x16x20cm^3	18x18x20cm^3
	analyzing dipole	analyzing dipole	analyzing dipole	swiping and analyzing dipoles
PS-tracker	Si strip detector	Hodoscope 4 planes of Sci -fi (?)	AC-LGAD tracking, 8x16 cm ² (52 sensors, 208 channels)	AC-LGAD - strip (as barrel TOF)
PS- CAL	W/SciFi with 140 channels	Spaghetti W- calorimeter with radiation- hard scintillating fiber (PMT readout)	PbWO4 (8x16x20cm^3) cells 2x2x20cm^2 2x32 channels	W-powder +epoxy infused into a bundle of scintillating fibers (like forward ECAL)
Direct Photon Cal	W/SciFi with 140 channels	Cherenkov-radiating quartz fibers read out by SiPMs	PbWO4 (16x16x20cm^3) cells 2x2x20cm^2 64 channels	Sci-fiber/tungsten spaghetti or Quartz fiber/tungsten spaghetti 100 channels

Luminosity system: integration

Far-Forward detectors

			current P6 configuration		
	CD1	Detector proposal 1	Detector proposal 2	ePIC	
B0 tracker	ITS3- 2 layers	ITS3- 2 layers	ITS3- 1 layers	all 4 layers	
	AC-LGAD pixel 2 layers	AC-LGAD pixel 2 layers	AC-LGAD pixel - 3 layers	AC-LGAD pixels	
B0 CAL	Pre-shower	Pre-shower	PbWO4 2x2x20cm^2	PbWO4 2x2x7cm ²	
	Pb + Si	Pb + Si		or LYSO	
RPOT/OMD	AC-LGAD	AC-LGAD	AC-LGAD	AC-LGAD	
	2 stations /2 layers	2 stations /2 layers	2 stations /2 layers	2 stations /2 layers + 2	
	+ 2 stations /2 layers (OMD)	+ 2 stations /2 layers (OMD)	+ 2 stations /2 layers (OMD)	stations /2 layers (OMD)	

ZDC			current P6 configuration	
	CD1	Detector proposal 1	Detector proposal 2	ePIC
Dimensions	60x60x200cm^3		60x60x200cm^3	
VETO	no	1 layer Si	Si - LowG pads - 2 layers HGCROC	Si -LG pads 56x54 cm ²
EMCAL	PbWO4 with SiPMs 2x2x20 cm^3	W/SciFi 2.5 × 2.5 cm towers 17 cm long	PbWO4 with APD 3x3x7cm ³ 20x20	PbWO4 (with APD) 56x54 cm ² 2x2x7cm ³ 28x27 or LYSO ?
EMCAL- imaging	no	no	Si- LowG pads - 20 layers Si-HighG pads -3 layers W alloy 3.5mm - 22 layers	(56x54 cm ²) - 20 layers
HCAL -imaging	no	no	Si-LowG pads 12 layer , HGCROC Pb- 3.5cm -12 layers	no
HCAL	Pb/Sci Pb: 3cm 3 stations	Pb/Scintillator 120 layers of 1 cm Pb and 0.25 cm scintillator	Pb/Sci - 2 stations Pb- 3cm -15 layers Sci-10cmx10cmx2mm	Pb/Sci ? Or as Insert

B0-detectors-integration

- Mechanical integration (all AC-LGAD + PbWO4 (7cm) CAL)
- Installation and maintenance
- Cooling/cabling

B0: integration

B0: integration

Roman Pots: readout, cooling, integration

- The Roman pots need cooling of ~100 Watts per active layer, while the OMD needs about 40% less.
 Preliminary concept of the readout and cooling, based on the ATLAS HGTD (R&D). Conductive cooling using thin copper strips couple to LN2 exchanger.
- Support structure, integration and RF -shielding it is an iterative process, in collaboration with accelerator and vacuum team (impact on the accelerator)
- Exit window for the neutron cone -> minimize an amount of material on the way of neutrons.

ZDC engineering design and integration

- 1. Readout and Cooling
- **2. ZDC integration with accelerator lattice:** z-location 35.8 m, stay-clear zone around the hadron beam-pipe

Requirements and Interface documents - example for low-Q2

	GENERAL F	REQUIREMENTS							
Low-O2 System	Low O2 System			1		Туре	RelatedSystemID	InterfaceName	Description
Low-Q2 System G-DET-ANC-LOWQ2.1 The Low- Q² detectors will measure and position of the scattering electr Q² below 1 GeV² in the far-backwar directions.		l measure the energy ring electrons with r-backward			COOL	DET-INF-COOL	Process Cooling	Either a liquid or gas cooling system will be required to remove heat from the calorimeter, tracking and readout electronics, to maintain them at room temperature.	
FUN		ENTS	PERF		NTS	ELEC	DET-ELEC	Low Voltage	The detector will receive DC power provided by the Detector Electronics group.
Low-Q2 System F-DET-ANC-LOWQ2.1	The acceptance for the low- Q ² tagg complement the central detector to coverage close to the limit given by divergence of the beam.	er should G-DET-ANC-LOWQ2.1 reach the the	P-DET-ANC-LOWQ2.1	Low-Q2 will have 2 tagger stations	F-DET-ANC-LOWQ2.1 F-DET-ANC-LOWQ2.4 F-DET-ANC-LOWQ2.5	ELEC	DET-ELEC	Bias Voltage	The detector will receive DC power provided by the Detector Electronics
-DET-ANC-LOWQ2.2	The Low- Q ² calorimeter will be use measure the energy of the scattered	d to <u>G-DET-ANC-LOWQ2.1</u>	P-DET-ANC-LOWQ2.2	each Low-Q2 stations will have 4 layers of tracking and 1 calorimeter	F-DET-ANC-LOWQ2.2 F-DET-ANC-LOWQ2.3				electronics.
-DET-ANC-LOWQ2.3	electrons. The tracking system will be used to determinate a position and angle of scattered electron.	G-DET-ANC-LOWQ2.1 the	P-DET-ANC-LOWQ2.3	The Low-Q2 tracking system shall provide a momentum resolution < 5%.	F-DET-ANC-LOWQ2.1	ELEC	DET-ELEC	High Voltage	The detector will receive DC power provided by the Detector Electronics
F-DET-ANC-LOWQ2.4	Low- Q ² tagger will be located along outgoing electron beam, after the E dipole (20 -40 m away from the IP)	the <u>G-DET-ANC-LOWQ2.1</u> i2eR		resolution (to be determined)	F-DET-ANC-LOWQ2.3				group to support silicon sensors and calorimeter.
F-DET-ANC-LOWQ2.5	Low- Q ² tagger will have at least two	o stations <u>G-DET-ANC-LOWQ2.1</u>	P-DET-ANC-LOWQ2.4	XX in X and XX in Y (to be determined)	F-DET-ANC-LOWQ2.1 F-DET-ANC-LOWQ2.3	CONTROL	DET-COMP-ONLINE	Slow Controls	Network connection from the DAQ system to
F-DET-ANC-LOWQ2.6	LowQ2 system must operate at a fu	projected G-DET.9	P-DET-ANC-LOWQ2.4	Low- Q ² tagger2 tracker will have dimensions XX in X and XX in Y (to be determined)	F-DET-ANC-LOWQ2.1 F-DET-ANC-LOWQ2.3				the detector's slow controls interface.
	EIC luminosity and must be resistan extreme background conditions (syn radiation, bremsstrahlung events an neutrons in particular) at the levels by the simulation studies	t to <u>G-DET.10</u> hchrotron hd slow specified	P-DET-ANC-LOWQ2.3	Low- Q ² tracker will provide	F-DET-ANC-LOWQ2.2	DATA	DET-COMP-ONLINE	Data Transfer and Control Interface	Fiber connection from the DAQ system to the detector's RDO to perform configuration,
			P-DET-ANC-LOWQ2.3	Low- Q ² calorimeter will have granularity (cell size) XX (to be determined)	F-DET-ANC-LOWQ2.2	D 474			acquisition.
Next ste	ep: detector s	pecification	P-DET-ANC-LOWQ2.2	Low-Q2 calorimeter energy resolution for electrons shall be s(E)/E < 10%/sqrt(E) + 3%.	F-DET-ANC-LOWQ2.2	DAIA	DET-COMP-ONLINE	Timing Interface	the DAQ system to the detector's RDO used
			P-DET-ANC-LOWQ2.4	Low- Q ² tagger 1 calorimeter will have dimensions XX in X and XX in Y (to be	F-DET-ANC-LOWQ2.3				for timing synchronization.

Low- Q² tagger 2 calorimeter will have

Must handle a data rate and operate reliably

dimensions XX in X and XX in Y (to be

at a full projected EIC luminosity.

determined)

DET-ANC-LOWQ2.3

-DET-ANC-LOWQ2.2

DET-ANC-LOWQ2.6

P-DET-ANC-LOWO2.4

P-DET-ANC-LOWQ2.4

Timeline and conclusions.

- > Preliminary design review of ANC detectors in Dec 2023 Jan 2024
- > Need to select default configuration and update P6 cost and schedule before the review.
- > Final design review end of 2024 (early 2025) + TDR (started a draft of TDR for low-Q2, but not for other subsystems)
- The installation of far-forward equipment is at later stage and synchronized with commissioning activities. All scattering chambers that house detectors will be installed from the start of pre-ops. The detector packages will be installed later, after achieving a stable operation of the accelerator
- > Luminosity detectors has to be at start of pre-ops.

Backup

Luminosity monitor: High rate photon Calorimeter

Direct bremsstrahlung photons measurements can provide very simple and precise EIC luminosity measurements: almost 100% acceptance.

Base-line HRC detector choice:

- 1. **Quartz fiber/tungsten spaghetti** calorimeter for energy flow maximal **radiation hardness**
- 2. Sci fiber/tungsten spaghetti calorimeter for single photon measurements maximal energy resolution

Baseline choice still under consideration due to high rates for eA and high synchrotron load \rightarrow balance radiation hardness with energy resolution

Luminosity monitor: Pair Spectrometer

Value engineering on the technology choice is ongoing (synergies with other sub-detectors (*)

✓ Pair-Spectrometer Calorimeter

- Technology: W-powder + epoxy infused into a bundle of scintillating fibers (like fECAL).
- ➡Total size 20cmx20cmx20cm
- ➡Module size 2x2x20cm^3
- Five fibers (radius 0.1cm) are bundled to form a single readout channel

✓Pair-Spectrometer tracker

- ➡ AC-LGAD strips as for barrel TOF
- ➡Benefits from Tracking Planes in front of CALs:
 - Enables standalone detector calibration
 - Better energy resolutions
 - Well defined acceptance, no "fuzzy" edges as with CALs.
 - Rejection of background

Vacuum chambe with conversion foi inside

XY fibers

Dipoles design properties: ✓ 1.2m long with field reaching about 0.8T ✓ 15cm bore diameter ✓ Fringe field at electron beam pipe < 4 Gauss</p>