Overview of the Pair Spectrometer Design and Performance

Dhevan Gangadharan, Nick Zachariou, Bill Schmidke TIC meeting: Oct 16th 2023

Luminosity System Requirements

EIC Yellow Report Requirements:

- Absolute lumi $\delta L/L \sim 1\%$
- Relative lumi $\delta(L\uparrow L\downarrow)/(L\uparrow L\downarrow) \sim 10^{-5}$

	ZEUS Pair Spectror	neter Systematics	
Component		Sub-component systematics	
Acceptance	(1.6%: total)	1.0%: Aperture and detector alignment	
		1.2% : X-position of photon beam	
Photon conversion	in exit window (0.7%: total)	0.1%: thickness of window	NIM A 7
		0.3%: chemical composition	
		0.6%: photon conversion cross section	
RMS-cut correction	(0.5%: total)	0.5%: rejection of proton-gas interactions	
Total		1.8%	

...

NIM A 744 (2014) 80-90

Lessons learned from ZEUS:

- Focus primarily on the acceptance uncertainties
- The ePIC lumi pair spectrometer is designed to reduce this uncertainty.

PS Component Status

- Sweeper and Analyzer Dipole Magnets (controlled low rates)
 - <u>Design completed</u> by <u>Xu Peng</u>.
 - DX=76 cm, DY=96 cm, DZ=120 cm
 - Nominal field at center ~0.86 T, $\int Bx^*dz = 1.14 T^*m$
- Vacuum Chamber (controlled low rates & minimize conversions in air)
 - Preliminary design ready: lgor Korover.
 - Pipe Occupying region between dipole magnets, diameter=15 cm, DZ=520 cm.
 - Enlarged chamber in middle to house a thin conversion foil.
- Calorimeter (primary detector)
 - Preliminary design ready: <u>UH and York groups</u>. Based on W-powder SciFi design of fECAL.
 - \circ 18 cm cube
- **Trackers** (precision measurement of fiducial area and photon beam profile, CAL calibration)
 - 2 layers of AC-LGAD (pixel or strip) sufficient: <u>UH</u>.
 - 20 cm x 20 cm sheets. 1st layer at CAL face, 2nd layer 10 cm away.

Schematic of PS CALs and its modules

PS CALs

Performance metrics:

- $\delta E/E \sim 9\%/\sqrt{E}$. Much better than the baseline ZEUS spectrometer CAL: 17%/ \sqrt{E} .
- Position resolution ~ 0.7 mm

Tracking planes (2 layers)

What information they provide:

- Precise photon transverse position measurements: X_v and Y_v
- Precise E measurement (~1%).
- Precisely known fiducial area.
- Online E calibration for PS CALs (angle of track related to E).

x-xGen {e<20 && dca<10}

e {e<20 && dca<10}

