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Beyond Standard Model physics parameters
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Hidden Abelian Higgs Model
New Scalar 𝑆, new vector boson 𝑍𝑑

Five different parameters:

𝑚𝑆 - new scalar mass
𝑚𝑍𝑑

 -  new vector boson mass

Γ𝑍𝑑
 - decay width of the new vector boson

𝜖 – mixing between Standard Model 𝑍 and 𝑍𝑑

𝜅 – mixing between Higgs Boson 𝐻 and 𝑆

In general, we would like to know what the associated cross section limits are for each 
combination of parameter values, or which combinations are excluded.

https://link.springer.com/article/10.1007/JHEP02(2015)157


Cross section limit calculation
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JHEP03(2022)041

• Generate Monte Carlo (MC) Events for

• Standard Model backgrounds
do this once using Standard Model parameters

• Signal process under the given signal model
do once for every point in parameter phase space

• Apply selection for backgrounds and signal

• Profile Likelihoods for each simulated signal to find upper limits 
on the cross section 𝜎

ℒ 𝜎 = ෑ

𝑖

Pois Data𝑖|𝐵𝑖 + 𝑆𝑖 ⋅ 𝜎

• 𝑆𝑖, 𝜎 dependent on physics parameters 𝑚𝑆, 𝑚𝑍𝑑
, Γ𝑍𝑑

, 𝜖 , 𝜅

https://doi.org/10.1007/JHEP03(2022)041


Limits in multidimensional parameter space
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𝑚𝑍𝑑

𝜖

Process for calculation of limits in phase space conceptionally 
simple, e.g., do a ‘grid search’

• Select boundaries in 𝑚𝑆, 𝑚𝑍𝑑
, Γ𝑍𝑑

, 𝜖, κ

• Generate grid of signal samples 

• And calculate cross section limits for each sample

• Bonus: with theory predictions one can infer contours between 
excluded and not excluded regions of parameter space

Problem:
• Generating Monte Carlo samples is computationally expensive



Monte Carlo Simulation

5

Monte Carlo (MC) Event simulation is very 
computationally intensive

• ~15h calculation time for 100 simulated 
events on a single CPU core

• Might need around 105 events or more per 
signal sample

• Using a grid of 10 values in two dimensions 
would require 107 events, about
~2k CPU months

• Estimate is for fast calorimeter simulation, 
full calorimeter simulation requires even 
more computational resources

CPU resources available to the ATLAS experiment in late January 2023

time [Month/Day]
#C

P
U

 c
o

re
s

ATLAS experiment

https://twitter.com/ATLASexperiment/status/1622987527593291782/photo/1


Active Learning
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We developed a system to work around the computational 
constraints by using an Active Learning approach that includes

• Surrogate model that approximates the function mapping physics 
parameters onto exclusion limits

𝑚𝑆,𝑚𝑍𝑑
,Γ𝑍𝑑

,𝜖,𝜅 →  𝜎𝑚𝑆,𝑚𝑍𝑑
,Γ𝑍𝑑

,𝜖,𝜅

• An acquisition function that determines which points in the physics 
parameter space, e.g. 𝑚𝑆,𝑚𝑍𝑑

,Γ𝑍𝑑
,𝜖,𝜅 , to explore next based on the 

surrogate model

An iterative process to collect new labelled data for optimization tasks



Active Learning Application
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Our system builds on ATLAS grid infrastructure to enable the application of the active learning in the 
exploration of the parameter phase space

It is realized via the intelligent data delivery service (iDDS) that allows a docker container instance to effect the 
simulation Monte Carlo samples on the ATLAS grid, run an analysis on REANA, and exchange data between 
them

• The iDDS is a computing service that allows for on-demand data transformation and granular data delivery 
within the ATLAS grid

• PanDA is the Production and Distributed Analysis workload management system for the ATLAS grid

• REANA is a platform enabling workflow preservation and reuse of data for analysis

iDDS



Surrogate Model
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Surrogate Model: Gaussian Process

• Non-parametric model, yielding probability distribution 
over possible functions that fit a set of points.

• Assumes output 𝑓(𝑥) is a random variable for each input 𝑥
and 𝑝 𝑓 𝑥1 , 𝑓 𝑥2 , …  is a multivariate gaussian:

𝑝 𝑓( Ԧ𝑥) = 𝐺 𝑓 Ԧ𝑥 | Ԧ𝜇, 𝑲

mean vector 𝜇𝑖 = 𝐸 𝑥𝑖

covariance matrix 𝑲𝑖𝑗 = 𝑘 𝑥𝑖 , 𝑥𝑗

kernel 𝑘, many options, common choice:
Radial Basis Function kernel

𝑘 𝑥𝑖 , 𝑥𝑗 = exp −
𝑥𝑖 − 𝑥𝑗

2

2𝑙2



Surrogate Model & 
Acquisition Function
Acquisition Function: Probability of improvement

• Assume we want to find the minimum of an underlying 
true function, via optimizing surrogate model

• 𝑓 𝑥∗  is current minimum, then choose next value to 
sample for surrogate model, such that

PI 𝑥 = Prob 𝑓 𝑥 − 𝑓 𝑥∗ < 0
is maximal

• PI 𝑥  calculable as 𝑓 𝑥  is a gaussian distribution with 
mean 𝜇 𝑥 , and standard deviation 𝜎 𝑥  

𝑃𝐼 𝑥 = Φ
𝑓 𝑥∗ − 𝜇(𝑥)

𝜎 𝑥

Φ – Gaussian cumulative distribution function

• See ‘Active Learning for Excursion Set Estimation’ by Kyle 
Cranmer et al. for an entropy-based acquisition function
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https://indico.cern.ch/event/708041/contributions/3269754/attachments/1811495/3416498/ExcursionSet_1.pdf


Iterative feedback & learning
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start with 7 random initial points

7 initial points + 2 predicted points

7 initial points + 1 predicted point

7 initial points + 3 predicted point



Production 
Interface
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Dark Sector Search
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JHEP03(2022)041

Demonstrate active learning pipeline on one of the analysis 

channels from JHEP03(2022)041:

Search for Higgs bosons decaying into new spin-0 or spin-1 

particles in four-lepton final states with the ATLAS detector 

with 139 𝑓𝑏−1 of 𝑝𝑝 collision data at 𝑠 = 13 TeV

Low-mass (LM) 𝐻 → 𝑍𝑑𝑍𝑑 → 4𝜇 01 GeV < 𝑚𝑍𝑑
 < 15 GeV targeting Higgs portal

High-mass (HM) 𝐻 → 𝑍𝑑𝑍𝑑 → 4ℓ 15 GeV < 𝑚𝑍𝑑
< 60 GeV targeting Higgs portal

Single 𝑍 boson (ZX) 𝐻 → 𝑍𝑍𝑑 → 4ℓ 15 GeV < 𝑚𝑍𝑑
< 55 GeV targeting hypercharge portal

Focusing on ZX channel

• Original analysis performed 1D scan in 𝑚𝑍𝑑

• Extend to 2D scan in 𝑚𝑍𝑑
 and 𝜖

https://doi.org/10.1007/JHEP03(2022)041
https://doi.org/10.1007/JHEP03(2022)041


Verify MC Production 
& Analysis Chain

13
JHEP03(2022)041

Slight difference in MC Production and Analysis setup with 

respect to published analysis at: JHEP03(2022)041 

• Slightly different MC production setup

• Smaller amount of MC statistics 10k vs ~200k 

Check against published cross section limit values on HEPData

Agreement within 4% - good!

JHEP03(2022)0412

https://doi.org/10.1007/JHEP03(2022)041
https://doi.org/10.1007/JHEP03(2022)041
https://doi.org/10.17182/hepdata.111057
https://doi.org/10.1007/JHEP03(2022)041


2D Demonstration
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Parameter phase space bounded by 
• 15 ≤ 𝑚𝑍𝑑

≤ 55 GeV

• 10−4 ≤ 𝜖 ≤ 10−1 
Run in 4 iterations with 30 points total

ATL-PHYS-PUB-2023-010

https://cds.cern.ch/record/2857975


Heavy Higgs 𝑯 to 𝑾𝑾
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Search for process 𝑊±𝐻 → 𝑊±𝑊±𝑊∓ → ℓ±𝜈 ℓ±𝜈 𝑗𝑗
Assume no specific model, instead consider effective Lagrangian up to 
dimension 6

𝐻𝑊𝑊 couplings parametrized by couplings
𝜌𝐻, 𝑓𝑊, 𝑓𝑊𝑊

Published here: arXiv:2211.02617 

https://arxiv.org/abs/2211.02617


Heavy Higgs Results
Two-dimensional results in the 𝑓𝑤-𝑓𝑤𝑤 plane 
for 𝑚𝐻 = 300, 600, 900 GeV 

16

One-dimensional results as a function of 𝑚𝐻 for two 
combinations of 𝑓𝑤 and 𝑓𝑤𝑤:

𝜌𝐻𝑓𝑤

Λ2 ,
𝜌𝐻𝑓𝑤𝑤

Λ2 = 0, 12.4/TeV2 , 2.7/TeV2, 0 

𝜌𝐻 set to 0.05, Λ set to 5 TeV in this study Obtain cross section theory predictions from heavy SM like Higgs 



Signal samples 
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× 3 × 2

Generated signal samples in 16 directions 
for 𝑓𝑤-𝑓𝑤𝑤 plane limits

Study relied on 196 different signal samples in total
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Production 
Interface II



Active Learning for Excursion Set Estimation
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Kyle Cranmer, Lukas Heinrich, Gilles Louppe

Cranmer et. al have developed such an 
active learning method:
https://github.com/diana-hep/excursion 

Presume we conduct a grid search with the 
goal to find an exclusion contour

allowed
𝜎predicted < 𝜎observed 

excluded
𝜎predicted > 𝜎observed 

Ideally, we would like to have an active 
learning method that optimizes the exclusion 
contour, predicting phase space points that 
help in that task.

Active Learning for Excursion Set Estimation Active Learning for Excursion Set Estimation

https://indico.cern.ch/event/708041/contributions/3269754/attachments/1811495/3416498/ExcursionSet_1.pdf
https://github.com/diana-hep/excursion
https://indico.cern.ch/event/708041/contributions/3269754/attachments/1811495/3416498/ExcursionSet_1.pdf
https://indico.cern.ch/event/708041/contributions/3269754/attachments/1811495/3416498/ExcursionSet_1.pdf
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Physics parameter 𝜃, 𝜎𝑜𝑏𝑠
𝑢𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡

≡ 𝜎 𝜃 obs
upperLimit

, 𝜎theory ≡ 𝜎 𝜃 theory

Entropy based acquisition function
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Physics parameter 𝜃, 𝜎𝑜𝑏𝑠
𝑢𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡

≡ 𝜎 𝜃 obs
upperLimit

, 𝜎theory ≡ 𝜎 𝜃 theory

𝜃 is excluded if 𝜎obs
upperLimit

 ≤ 𝜎theory or 𝑦 =
𝜎obs

upperLimit

𝜎theory
≤ 1 

So find contour where 
𝜎obs

upperLimit

𝜎theory
= 1 

Entropy based acquisition function
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Physics parameter 𝜃, 𝜎𝑜𝑏𝑠
𝑢𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡

≡ 𝜎 𝜃 obs
upperLimit

, 𝜎theory ≡ 𝜎 𝜃 theory

𝜃 is excluded if 𝜎obs
upperLimit

 ≤ 𝜎theory or 𝑦 =
𝜎obs

upperLimit

𝜎theory
≤ 1 

So find contour where 
𝜎obs

upperLimit

𝜎theory
= 1 

Gaussian Process maps every 𝜃 onto a Gaussian: 𝑦 𝜃  is distributed as 𝐺 𝑦 𝜃 | Ԧ𝜇, 𝑲

𝑃 𝜃 is excluded = 𝑃excl 𝜃 = න
−∞

1

𝑑𝑦 𝐺 𝑦 𝜃 | Ԧ𝜇, 𝑲

Entropy based acquisition function
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Physics parameter 𝜃, 𝜎𝑜𝑏𝑠
𝑢𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡

≡ 𝜎 𝜃 obs
upperLimit

, 𝜎theory ≡ 𝜎 𝜃 theory

𝜃 is excluded if 𝜎obs
upperLimit

 ≤ 𝜎theory or 𝑦 =
𝜎obs

upperLimit

𝜎theory
≤ 1 

So find contour where 
𝜎obs

upperLimit

𝜎theory
= 1 

Gaussian Process maps every 𝜃 onto a Gaussian: 𝑦 𝜃  is distributed as 𝐺 𝑦 𝜃 | Ԧ𝜇, 𝑲

𝑃 𝜃 is excluded = 𝑃excl 𝜃 = න
−∞

1

𝑑𝑦 𝐺 𝑦 𝜃 | Ԧ𝜇, 𝑲

Entropy

𝐻 𝜃 = − ෍

𝑥∈𝑋

𝑝 𝑥 log 𝑝 𝑥

𝐻 𝜃 = −𝑃excl 𝜃 log 𝑃excl 𝜃 − 1 − 𝑃excl 𝜃 log 1 − 𝑃excl 𝜃

Select new points to explore where 𝐻 𝜃  is maximal

Entropy based acquisition function
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Prototype updated
Active Learning step

Approximate topology of 
observed and theory 
limits in 𝜌𝐻, 𝑓𝑤, 𝑓𝑤𝑤 space 
with dummy functions

Use dummy function to test the ability of 
the active learning process to approximate 
the topology of exclusion contour

Grey Mesh: true dummy exclusion contour
Red Mesh: surrogate exclusion contour
 

𝑓𝑤

𝑓𝑤𝑤
𝜌𝐻

10 learned points 
       + 3 initial ones

‘dummy functions’

done with 
excursion 
package

https://github.com/diana-hep/excursion


Conclusion
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• Demonstrated active learning driven re-analysis for published dark 
sector analysis – see ATLAS PubNote ATL-PHYS-PUB-2023-010

• Extended ZX analysis channel from 1D to 2𝐷 parameter space in 
𝑚𝑍𝑑

 and 𝜖

• Many other applications and possibilities for this tool and workflow

• Documentation here  

• Another ATLAS application of active learning using a different tool:
Active Learning reinterpretation of an ATLAS Dark  Matter search 
constraining a model of a dark Higgs boson decaying to two 𝑏-quarks
ATL-PHYS-PUB-2022-045

• Preparing second demonstrator based on heavy Higgs Boson search
• 3D parameter space
• theory predictions to prioritize exclusion contours

A search for heavy Higgs bosons decaying into 
vector bosons in same-sign two-lepton final states in 

𝑝𝑝 collisions at 𝑠=13 TeV with the ATLAS detector
arXiv:2211.02617 

ATL-PHYS-PUB-2023-010

https://cds.cern.ch/record/2857975
https://pchain-doc.readthedocs.io/en/latest/index.html
http://cds.cern.ch/record/2839789?ln=en
https://arxiv.org/abs/2211.02617
https://arxiv.org/abs/2211.02617
https://cds.cern.ch/record/2857975


The End.
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Thank you!



Backup.
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