

ATLAS analysis using PanDA/iDDS based active learning

<u>Christian Weber,</u> Rui Zhang, Tadashi Maeno, Wen Guan, and Torre Wenaus

BNL Physics 7th joint meeting on AI/ML

September 27th, 2023

Beyond Standard Model physics parameters

 Z_d

<u>Hidden Abelian Higgs Model</u> New Scalar *S*, new vector boson Z_d

Five different parameters:

 $\begin{array}{l} m_S \ \text{-new scalar mass} \\ m_{Z_d} \ \text{-new vector boson mass} \\ \Gamma_{Z_d} \ \text{-decay width of the new vector boson} \\ \epsilon \ - \text{mixing between Standard Model } Z \ \text{and } Z_d \\ \kappa \ - \text{mixing between Higgs Boson } H \ \text{and } S \end{array}$

In general, we would like to know what the associated cross section limits are for each combination of parameter values, or which combinations are excluded.

Cross section limit calculation

- Generate Monte Carlo (MC) Events for
 - Standard Model backgrounds do this once using Standard Model parameters
 - Signal process under the given signal model do once for every point in parameter phase space
- Apply selection for backgrounds and signal
- Profile Likelihoods for each simulated signal to find upper limits on the cross section σ

$$\mathcal{L}(\sigma) = \prod_{i} \text{Pois}(\text{Data}_{i} | B_{i} + S_{i} \cdot \sigma)$$

• S_i , σ dependent on physics parameters m_S , m_{Z_d} , Γ_{Z_d} , ϵ , κ

Limits in multidimensional parameter space

Process for calculation of limits in phase space conceptionally simple, e.g., do a 'grid search'

- Select boundaries in m_S , m_{Z_d} , Γ_{Z_d} , ϵ , κ
- Generate grid of signal samples
- And calculate cross section limits for each sample
- Bonus: with theory predictions one can infer contours between excluded and not excluded regions of parameter space

Problem:

• Generating Monte Carlo samples is computationally expensive

Monte Carlo Simulation

Monte Carlo (MC) Event simulation is very computationally intensive

- ~15h calculation time for 100 simulated events on a single CPU core
- Might need around 10⁵ events or more per signal sample
- Using a grid of 10 values in two dimensions would require 10^7 events, about ${\sim}2k$ CPU months
- Estimate is for fast calorimeter simulation, full calorimeter simulation requires even more computational resources

CPU resources available to the ATLAS experiment in late January 2023

Active Learning

An iterative process to collect new labelled data for optimization tasks

We developed a system to work around the computational constraints by using an Active Learning approach that includes

• Surrogate model that approximates the function mapping physics parameters onto exclusion limits

 $m_S, m_{Z_d}, \Gamma_{Z_d}, \epsilon, \kappa \rightarrow \sigma_{m_S, m_{Z_d}, \Gamma_{Z_d}, \epsilon, \kappa}$

• An acquisition function that determines which points in the physics parameter space, e.g. $m_S, m_{Z_d}, \Gamma_{Z_d}, \epsilon, \kappa$, to explore next based on the surrogate model

Active Learning Application

Our system builds on ATLAS grid infrastructure to enable the application of the active learning in the exploration of the parameter phase space

It is realized via the intelligent data delivery service (iDDS) that allows a docker container instance to effect the simulation Monte Carlo samples on the ATLAS grid, run an analysis on REANA, and exchange data between them

- The iDDS is a computing service that allows for on-demand data transformation and granular data delivery within the ATLAS grid
- PanDA is the Production and Distributed Analysis workload management system for the ATLAS grid
- REANA is a platform enabling workflow preservation and reuse of data for analysis

iDDS

reana

Surrogate Model

Surrogate Model: Gaussian Process

- Non-parametric model, yielding probability distribution over possible functions that fit a set of points.
- Assumes output f(x) is a random variable for each input x and $p(f(x_1), f(x_2), ...)$ is a multivariate gaussian:

 $p(f(\vec{x})) = G(f(\vec{x}) | \vec{\mu}, \mathbf{K})$

mean vector $\mu_i = E(x_i)$ covariance matrix $\mathbf{K}_{ij} = k(x_i, x_j)$ kernel k, many options, common choice: Radial Basis Function kernel

$$k(x_i, x_j) = \exp\left(-\frac{(x_i - x_j)^2}{2l^2}\right)$$

Surrogate Model & Acquisition Function

Acquisition Function: Probability of improvement

- Assume we want to find the minimum of an underlying true function, via optimizing surrogate model
- f(x*) is current minimum, then choose next value to sample for surrogate model, such that
 PI(x) = Prob(f(x) f(x*) < 0)</p>
 is maximal
- PI(x) calculable as f(x) is a gaussian distribution with mean $\mu(x)$, and standard deviation $\sigma(x)$ $PI(x) = \Phi\left(\frac{f(x^*) - \mu(x)}{\sigma(x)}\right)$

 Φ – Gaussian cumulative distribution function

• See '<u>Active Learning for Excursion Set Estimation</u>' by Kyle Cranmer et al. for an entropy-based acquisition function

Iterative feedback & learning

start with 7 random initial points

7 initial points + 1 predicted point

7 initial points + 2 predicted points

7 initial points + 3 predicted point

Dark Sector Search

Demonstrate active learning pipeline on one of the analysis channels from <u>JHEP03(2022)041</u>:

Search for Higgs bosons decaying into new spin-0 or spin-1 particles in four-lepton final states with the ATLAS detector with 139 fb^{-1} of pp collision data at $\sqrt{s} = 13$ TeV

Low-mass (LM) $H \rightarrow Z_d Z_d \rightarrow 4\mu$ 1 GeV $< m_{Z_d} < 15$ GeVtargeting Higgs portalHigh-mass (HM) $H \rightarrow Z_d Z_d \rightarrow 4\ell$ 15 GeV $< m_{Z_d} < 60$ GeVtargeting Higgs portalSingle Z boson (ZX) $H \rightarrow ZZ_d \rightarrow 4\ell$ 15 GeV $< m_{Z_d} < 55$ GeVtargeting hypercharge portal

Focusing on ZX channel

- Original analysis performed 1D scan in m_{Z_d}
- Extend to 2D scan in m_{Z_d} and ϵ

JHEP03(2022)041

Verify MC Production & Analysis Chain

Slight difference in MC Production and Analysis setup with respect to published analysis at: <u>JHEP03(2022)041</u>

- Slightly different MC production setup
- Smaller amount of MC statistics 10k vs ~200k

Check against published cross section limit values on <u>HEPData</u>

m_{Z_d}	HepData		This work		Ratio of this work to HepData	
[GeV]	Obs. [fb]	Exp. [fb]	Obs. [fb]	Exp. [fb]	Obs. [fb]	Exp. [fb]
15	0.34	0.48	0.32	0.48	0.96	1.00
20	0.74	0.53	0.73	0.51	0.97	0.96
25	0.37	0.54	0.37	0.55	1.01	1.01
30	0.56	0.51	0.57	0.52	1.01	1.02
35	0.39	0.33	0.39	0.34	1.01	1.03
40	0.39	0.25	0.39	0.26	1.00	1.03
50	0.30	0.21	0.30	0.20	0.99	0.97

Agreement within 4% - good!

→ 4I) [fb]

95 % CL upper limit on $\sigma(gg \rightarrow H \rightarrow ZZ_d$

13

2D Demonstration

Parameter phase space bounded by

- $15 \le m_{Z_d} \le 55 \text{ GeV}$
- $10^{-4} \le \epsilon \le 10^{-1}$

Run in 4 iterations with 30 points total

ATL-PHYS-PUB-2023-010

Heavy Higgs H to WW

Published here: arXiv:2211.02617

Search for process $W^{\pm}H \rightarrow W^{\pm}W^{\pm}W^{\mp} \rightarrow \ell^{\pm}\nu \ \ell^{\pm}\nu \ jj$ Assume no specific model, instead consider effective Lagrangian up to dimension 6

HWW couplings parametrized by couplings

 ho_H, f_W, f_{WW}

Heavy Higgs Results

Two-dimensional results in the f_W - f_{WW} plane for $m_H = 300, 600, 900 \text{ GeV}$

One-dimensional results as a function of m_H for two

combinations of f_w and f_{ww} :

 ρ_H set to 0.05, Λ set to 5 TeV in this study

Signal samples

17

Active Learning for Excursion Set Estimation

Kyle Cranmer, Lukas Heinrich, Gilles Louppe

Presume we conduct a grid search with the goal to find an exclusion contour

Active Learning for Excursion Set Estimation

Ideally, we would like to have an active learning method that optimizes the exclusion contour, predicting phase space points that help in that task.

Active Learning for Excursion Set Estimation

Cranmer et. al have developed such an active learning method:

https://github.com/diana-hep/excursion

Physics parameter θ ,

 $\sigma_{obs}^{upperLimit} \equiv \sigma(\theta)_{obs}^{upperLimit}, \qquad \sigma_{theory} \equiv \sigma(\theta)_{theory}$

Gaussian Process maps every θ onto a Gaussian: $y(\theta)$ is distributed as $G(y(\theta) | \vec{\mu}, K)$ $P(\theta \text{ is excluded}) = P_{\text{excl}}(\theta) = \int_{-\infty}^{1} dy \, G(y(\theta) | \vec{\mu}, K)$

Gaussian Process maps every θ onto a Gaussian: $y(\theta)$ is distributed as $G(y(\theta) | \vec{\mu}, K)$ $P(\theta \text{ is excluded}) = P_{\text{excl}}(\theta) = \int_{-\infty}^{1} dy \, G(y(\theta) | \vec{\mu}, K)$

Entropy

$$H(\theta) = -\sum_{x \in X} p(x) \log(p(x))$$

$$H(\theta) = -P_{\text{excl}}(\theta) \log(P_{\text{excl}}(\theta)) - (1 - P_{\text{excl}}(\theta)) \log(1 - P_{\text{excl}}(\theta))$$

Select new points to explore where $H(\theta)$ is maximal

Prototype updated Active Learning step

Expected limit

Observed limit

Expected ± 1σ

Expected $\pm 2\sigma$

TeV

 $J_{J}^{\rm F}$

10F

0

-10F

[d] (VV 220

 $VH) \times B(H)$

160

140

120

20

ATLAS

ATLAS

√s = 13 TeV, 139 fb⁻¹

= (0. 12.4 TeV⁻²

m_u = 300 GeV

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

Approximate topology of observed and theory limits in ρ_H , f_W , f_{WW} space with dummy functions

'dummy functions' observed theory, f1=0.1, f2=0.1 theory, f1=1., f2=1. Expected limit 3 Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ Theory ь 2 1 400 500 600 700 800 900 1000 1100 1200 m_H [GeV] m_H

Grey Mesh: true dummy exclusion contour Red Mesh: surrogate exclusion contour

> 10 learned points + 3 initial ones

Use dummy function to test the ability of the active learning process to approximate the topology of exclusion contour

 ρ_H

24

done with

excursion

package

 f_{ww}

Conclusion

- Demonstrated active learning driven re-analysis for published dark sector analysis – see ATLAS PubNote <u>ATL-PHYS-PUB-2023-010</u>
- Extended ZX analysis channel from 1D to 2D parameter space in m_{Z_d} and ϵ
- Many other applications and possibilities for this tool and workflow
- Documentation <u>here</u>
- Another ATLAS application of active learning using a different tool: Active Learning reinterpretation of an ATLAS Dark Matter search constraining a model of a dark Higgs boson decaying to two b-quarks <u>ATL-PHYS-PUB-2022-045</u>
- Preparing second demonstrator based on <u>heavy Higgs Boson search</u>
 - 3D parameter space
 - theory predictions to prioritize exclusion contours

25

arXiv:2211.02617

The End.

Thank you!

Backup.