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A Scalable and Distributed Al-assisted Detector Design for the EIC

e A 2 year project from Sep 15 2023 supported by DOE NP, ~$700k/yr total
e |ead PI: Cristiano Fanelli (William & Mary)

e Collaborating institutions:
o BNL: Physics (NPPS - T Wenaus) and CSI (HPC - Meifeng Lin)
m Supported participants: Wen Guan (35%) and similar fraction of experienced CSI
person Tianle Wang
o JLab: Experimental Nuclear Physics - Markus Diefenthaler
o Unis: Duke - Anselm Vossen, Catholic University of America - Tanja Horn

e \Wen will give a project overview and discuss our involvement and what
we’re bringing (‘scalable and distributed’)

e Ancillary benefits are important also

o Close collaboration with our sister EIC host lab on

m Al/ML and PanDA based complex workflows
e Discussing with JLab how/where to establish a PanDA instance for the project and more generally EIC
PanDA investigation
m EIC simulation
e Complements an LDRD project on this topic we’re just now starting, also a collaboration with JLab
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Introduction -- Al for EIC Detector (from Cristiano Fanelli)

EIC and Timeline - How Al come into play?
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https://indico.bnl.gov/event/12322/contributions/51982/attachments/36152/59311/AI_4_ECCE_PDF.pdf

Introduction -- Al for EIC Detector Design (from Cristiano Fanelli)

Detector Design with Al

e Designing detectors “with” Al is a new area of research at its infancy that can have a tremendous impact
across many fields (NP, HEP, Astro-Phys). See lectures hiips://github.com/cfteach/Al4ANP detector_opt
given at the AI4NP winter school hiips://indico.jlab.org/event/409/.

It includes a broad range of approaches, from “optimizing” an existing expert-drawn baseline detector
concept, to in principle letting Al design completely “new” and unseen configurations.

New field, not many examples... Many applications in other fields in recent years, e.g., industrial material,
molecular and drug design [1, 2].

Al-driven design is not limited to “interfacing” Al with existing advanced simulation platforms used in our
community (Geant). It also (and principally) entails establishing a procedural body of instructions to encode
efficiently the optimal design requirements and validate the results in a self-consistent way [3].

As far as optimization is concerned, the choice of a suitable algorithm is a challenge itself (no free lunch
theorem [4]) and the full potential of certain algorithms always requires some degree of customization. First
thing to do is to study and characterize the properties of the problem.

[1] A. Mosavi, T. Rabczuk, and A. R. Varkonyi-Koczy, “Reviewing the novel machine learning tools for materials design,” in Int. Conference on Global Research and

Education, pp. 50-58, Springer, 2017

[2] Z. Zhou, S. Kearnes, L. Li, R. N. Zare, and P. Riley, “Optimization of molecules via deep reinforcement learning,” Scientific Reports, vol. 9, no. 1, pp. 1-1Q0,2019 _, .
[3] CF et al. "Al-optimized detector design for the future Electron-lon Collider: the dual-radiator RICH case." JINST 15.05 (2020): P05009. r| St| a no Fa n el I |
[4] Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems for optimization. Trans. Evol. Comp 1, 67—82
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https://indico.bnl.gov/event/12322/contributions/51982/attachments/36152/59311/AI_4_ECCE_PDF.pdf

Introduction -- Parameter Optimization (from Cristiano Fanelli)

How do we design and optimize detectors?

e Typically full detector design is studied once the subsystem prototypes are ready.

In the subsystem design phase constraints from the full detector or outer layers are taken into
consideration.

Actually many parameters (mechanics, geometry, optics) characterize the design of each
sub-detector, hence the full design represents a large combinatorial problem. A well known
phenomenon observed in optimization problems with high-dimensional spaces is the
so-called “curse of dimensionality”™ [1], introduced for the first time by Bellman when
considering problems in dynamic programming.

In addition to that, more objective functions often need to be considered at the same time in
the design of each sub-detector (e.g., resolution, efficiency, cost, distinguishing power, etc).

In this context, Al offers SOTA solutions to solve complex optimization problems in an efficient

= \VA . .
way Cristiano Fanelli

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA M
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Introduction -- AI4EIC Dectector Opt workflow (from Cristiano Fanelli)

With large datasets...

Al

Model based on
observations,
decision making

Analysis of
Detector High-level
Simulation reconstruction of
events

Injection of
Physics
Events

Cristiano Fanelli
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https://indico.bnl.gov/event/10699/contributions/51453/attachments/36958/60875/AI4EIC_Talk_AI_ML_for_Design-UPL.pdf

Introduction -- AI4EIC Dectector Mode (from Cristiano Fanelli)

MODE

Detectors design with Al is gaining a lot of interest.

MODE is a recently formed collaboration of physicists and computer scientists who target the use of differentiable programming in
design optimization of detectors for particle physics applications A. G. Baydin et al. Nuclear Physics News 31.1 (Mar 30, 2021): 25-28.

Ambitious project: develop a modular, customizable, and scalable, fully differentiable pipeline for the end-to-end optimization of
articulated objective functions that model in full the true goals of experimental particle physics endeavours, to ensure optimal detector
performance, analysis potential, and cost-effectiveness.

Detector parameters
e Conceptual layout of an optimization pipeline

detector-related for a muon radiography apparatus.

systematic uncertainties

An end to end optimization requires modeling
of simulations. Requires collect reference data
to train the surrogate models ML
implementations.

Cosmic ray

simulator Detector

response

~
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https://indico.bnl.gov/event/10699/contributions/51453/attachments/36958/60875/AI4EIC_Talk_AI_ML_for_Design-UPL.pdf

Parameter Optimization with Al

< Objectives

> ?p’i?r:izp;’:i)éencu i\;\;]eAv:/.ill focus on the part of parameter Hél)r(l ( fl (Cl?), f2 (ZII), L fk (II}))

i
> Especially employ PanDA/IiDDS to provide a Distributed
Machine Learning (DML) platform, with also DML R&D.

¢ Spec . _ f: X —>RF
5 pecial requirements:
> Many Parameters f 1 (CB )
m Search space is big, many parallel jobs are required. - N
> Multiple Objectives .
m Multiple Objective Optimization fk (ZIZ)

m Multiple Objective Bayesian Optimization

< Solutions
> Many CPU intensively ---- Distributed with PanDA
> Multiple steps workflow orchestration ---- iDDS
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Current experience

Distributed ML with PanDA and iDDS in ATLAS
< PanDA as an engine for large scale AI/ML <« iDDS (intelligent Data Delivery Service)

> PanDA is powerful to schedule jobs to orchestrates the workflow for automation
distributed heterogeneous resources > Complex workflow orchestration

> Large scale m Collect results from previous tasks

> Transparent to users for different m Analyze the results with user predefined
computing resources jobs ,

> Smart workload routing m Generate new tasks/jobs based on the

analyses

% Use Cases
> HyperParameter Optimization
> Monte Carlo Toy based confidence limits
> Active Learning

CHEP2023 Talk: W. Christian et al. Distributed
Machine Learning with PanDA and iDDS in LHC ATLAS

Refine paramete Distributed
space parameters
evaluation

Workflow orchestration
for machine learning
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https://indico.jlab.org/event/459/timetable/?view=standard#197-distributed-machine-learni
https://indico.jlab.org/event/459/timetable/?view=standard#197-distributed-machine-learni

Current experience

HyperParameterOptimization (HPO) iDDS

. .
< HPO includes two parts The segmented HPO workflow

> Hyper parameter generating (steering) b SemehnemePat g
m Asynchronously ask-tell mode: when «4% ﬂ
needing more parameters, this part is wa
called to generate points N o
m Bayesian method can be used here ATLAS | —ithmedel D), [ipDS| — "
> Evaluation v e Viode! 12, Por()
m Distributed jobs in parallel to evaluate sljbnk\ask

different parameters

» iDDS HPO automates hyperparameter generation
and evaluation with many iterations: new
hyperparameters are generated automatically
from previous evaluation results.

% PanDA distributes evaluation tasks to CPU/GPUs
on potentially geographically distributed
resources.

r
11. Search space: a json file .
:2. Training code: scripts / package / gitlab repo 1
13. Segment definition (each with a unique segment name) |

“

R. Zhang FastCaloSim+DnnCaloSim

“
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Challenges

< Multiple steps workflow orchestration in iDDS

>  Client

m Inthe current iDDS HPO implementation, users need to explicitly convert operations/functions to iDDS
Work/Task.

m The AI4EIC workflow is very complicated. It’s very inconvenient to do this explicitly conversion.

m New methods are under investigation, for example, python decorator

> Server
m The current HPO implementation is based on an ask-tell mode.

m In AI4EIC workflow, the main script is complicated. It not only generates new parameters, but also does
other work. The ask-tell mode may not fit it. It may need to be running persistently.

m Investigating whether it’s possible to checkpoint/restart

< Inputs/outputs processing for different jobs

> How to efficiently and seamlessly transfer inputs and outputs for different jobs in a very large scale, to
construct the pipeline: output of one job can be input of another job
¢ Logs
> |t’s important to see the logs as soon as possible locally for DML

> Realtime logging?
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Preliminary work plans

< Environment setup
> Deploy a PanDA/IiDDS environment --- postgresqgl based PanDA, k8s?
> Distributed jobs to site CPUs (OSG?)

< Workflow orchestration:

> IDDS new workflow structure developments
> Investigate and develop new methods to handle inputs/outputs seamlessly for jobs

< Executor in pilot

> |nputs fetching and outputs forwarding

< Logs
> Realtime logging
< More future work

> DML Improvements and ML R&D

Thankes
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iDDS HyperParameter Optimization (HPO)

Register a HPO
request

iDDS HPO provides a fully-automated platform for
hyperparameter optimization on top of geographically
distributed CPU/GPU resources on the Grid, HPC and
CJouds.

<  Agroup of optimized hyperparameters can greatly improve the

iDDS

1. Generating
hyperparameters

3. Report rgéults

2. Evajuate

physics analysis performance. A lot of LHC analyses are using Lol L
HPO to enhance the performance. i

«» iDDS HPO automates hyperparameter generation and evaluation ;ﬁ
with many iterations: new hyperparameters are generated
automatically from previous evaluation results.

%  iDDS HPO distributes ML tasks to CPU/GPUs on potentially % A HPO task should include two parts
geographically distributed resources. > Hyperparameter generating:

«» iDDS HPO has been used by ATLAS ML users, not specific to o Option 1: define search space
ATLAS. with predefined methods

« Different use cases are using the HPO framework to automate L Option - develop user

distributed tasks.
=  FastCaloGAN
= Monte Carlo toy based confidence limits estimation
(requiring multiple steps of grid scans, where current steps
depend on previous steps)
¢ 1Bropkiraves fast simulations W. Guan NPPS

National Laboratory

container
> Evaluation
m User ML training/learning
process




