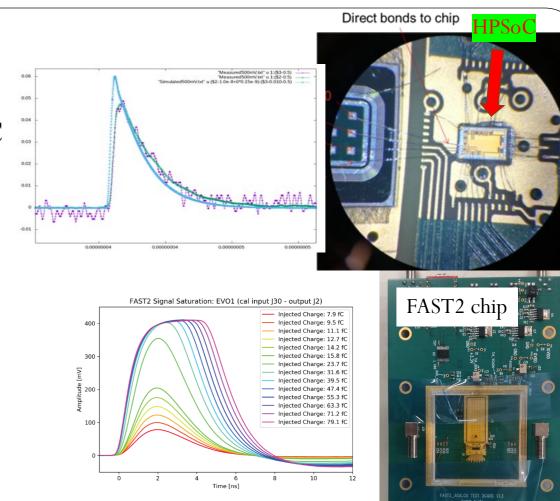
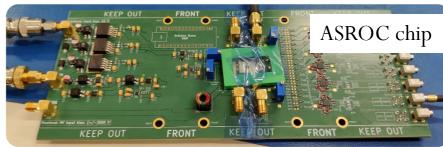


Alternative vendors readout chip update – erd109 effort

Dr. Simone M. Mazza (UCSC) for the SCIPP team

Dr. Simone M. Mazza - University of California Santa Cruz

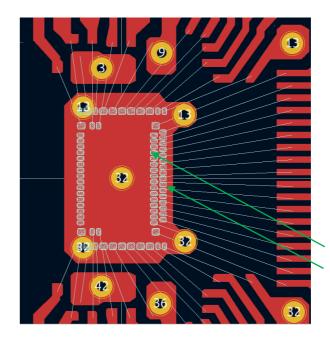

9/25/2023

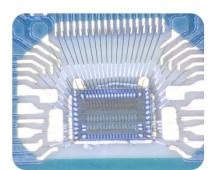

Alternative vendor chip status

- UCSC is working on three alternative vendor ASICs for ePIC
 AC-LGAD readout
- Goal
 - Fast timing, Jitter <10 ps
 - Power < 1 mW per channel

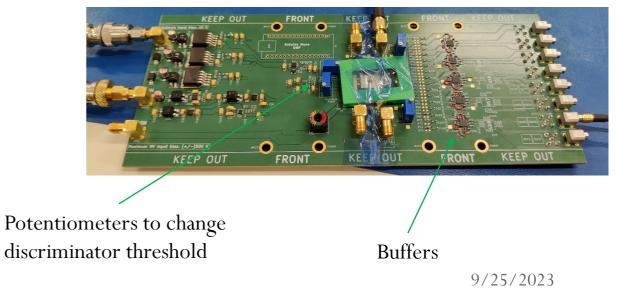
Institution	Name	Technology	Output	# of Chan	Funding	Specific Goals	Status	
INFN Torino				20	INFN	Large Capacitance TDC	Testing	
NALU Scientific	HPSoC*	65 nm CMOS	Waveform	5 (Prototype) > 81 (Final)	DoE SBIR	Digital back-end	V2 ready	
Anadyne Inc	ASROC**	Si-Ge BiCMOS	Discrim.	16	DoE SBIR	Low Power	Testing	

Dr. Simone M. Mazza - University of California Santa Cruz

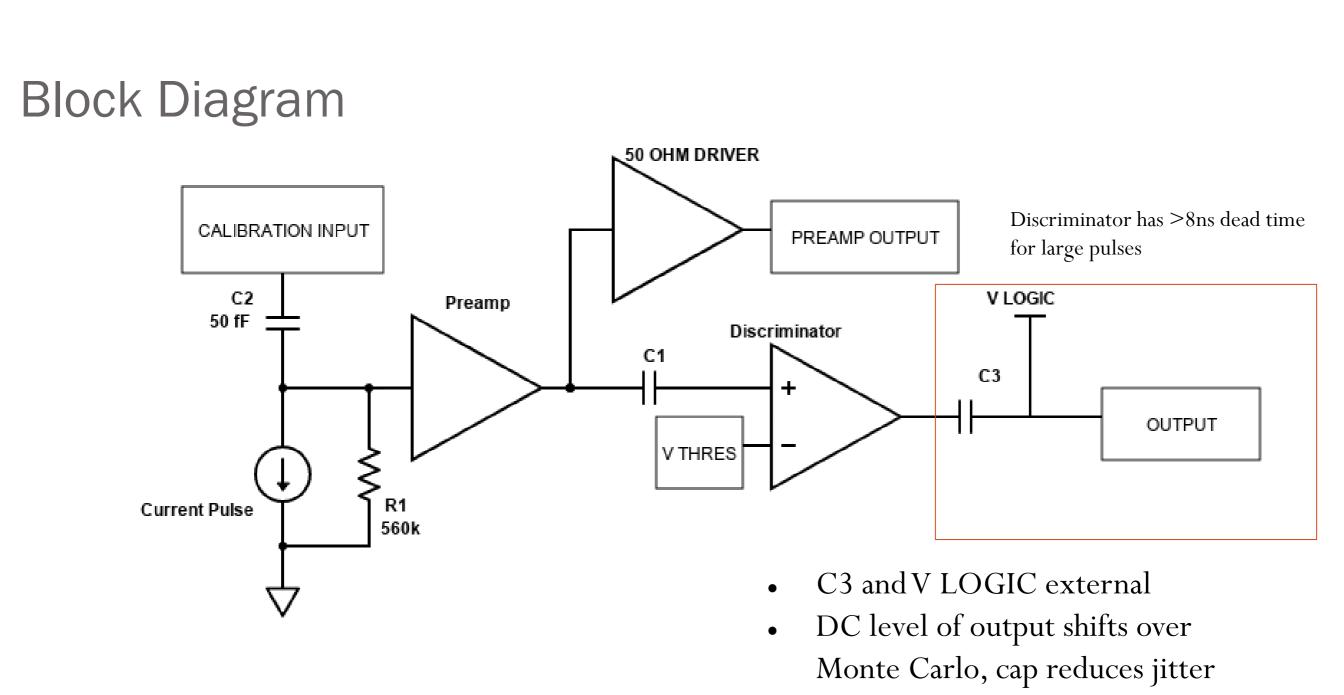




AS-ROC status


SiGe readout chip

- Chip developed together with Anadyne Inc. (actually run by former SCIPP members) and J. DeWitt
 - Received ~2 weeks ago
- Use of Tower Semiconductor SiGe technology
- AC-LGAD readout for EPIC
 - Low power consumption (<1mW/ch)
 - 16 channels
 - Developed for low input capacitance (pads)
 - Both analog and discriminator output
- Readout board developed by SCIPP
- Two version of the chip: low and more power
 - **Results shown for low power version**, another board will be ready soon to test more power version



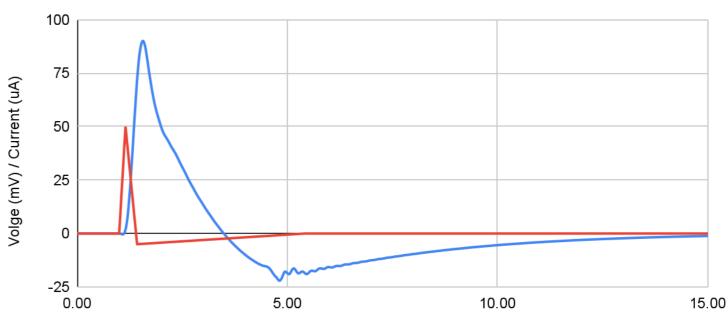
Analog Discriminator

4

• Disc cannot drive 50 Ohms

Simulation - Input Signals

Rise time = 150 ps


Fall time = 250 ps

Undershoot =
$$10 \%$$
 (total charge = 0)

Sensor capacitance = 200 fF

Preamp Output (mV) and Input Current (uA) for 10 fC

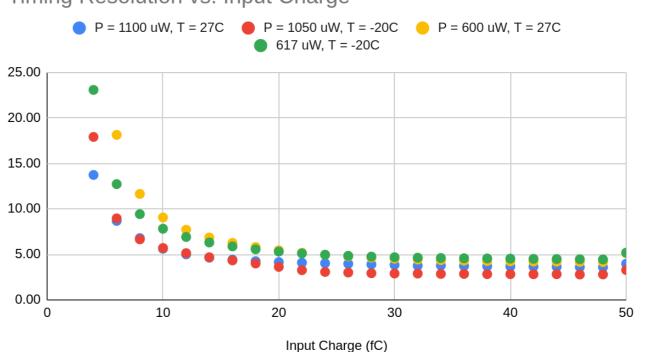
- Preamp Output - Input Current

Time (ns)

Simulation - Timing Resolution

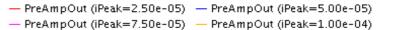
Jitter measured at 1 V threshold

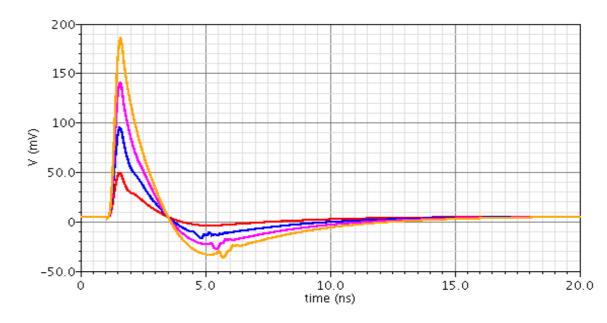
Low input charge timing resolution strongly dependent on power draw

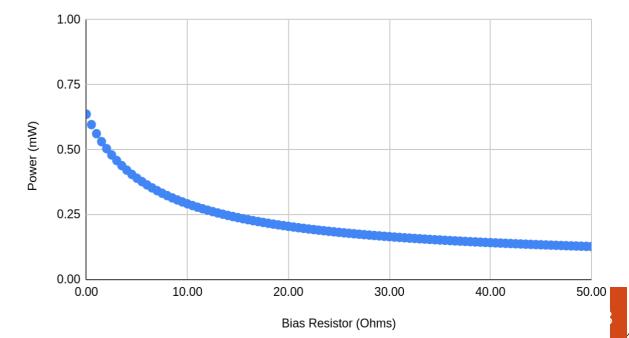

Threshold \sim 2.2-3.7 fC

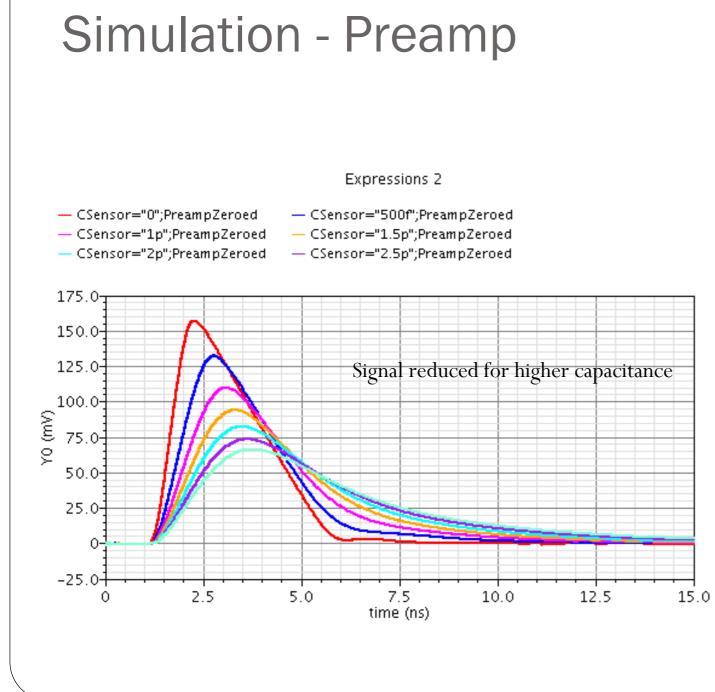
Preamp noise $\sim 0.4-0.7$ mV, signal 18-35 mV

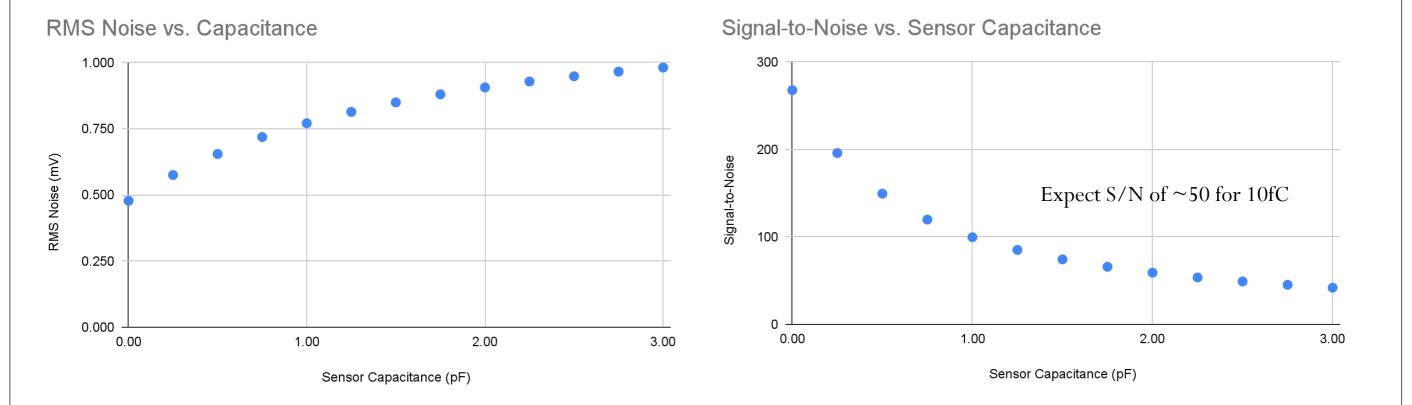
Performance improves with lower temperature


Decreasing the threshold greatly reduces performance for < 10 fC of input charge

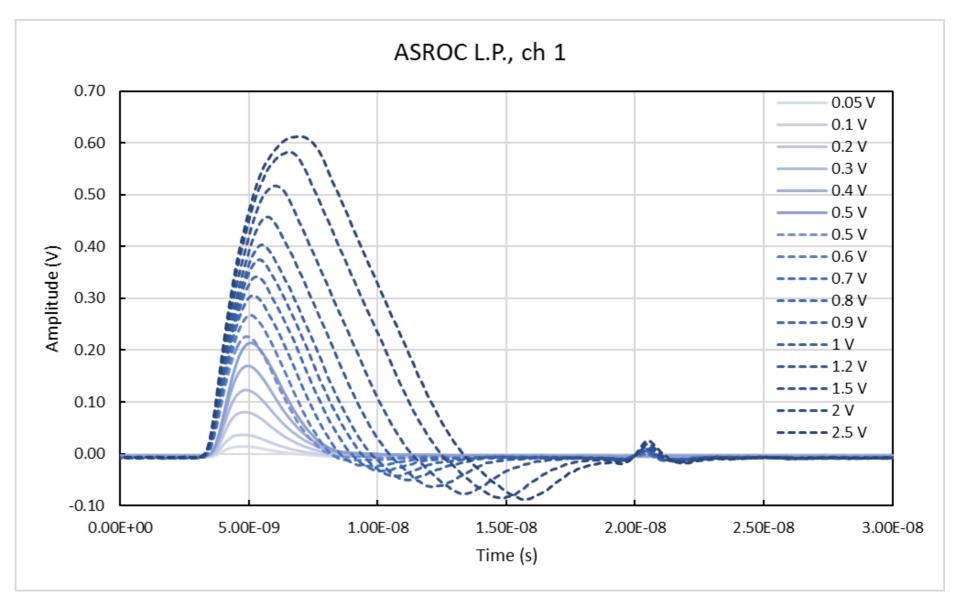

Resolution improves \sim 2 ps at 490 uW at -20 C


Timing Resolution vs. Input Charge

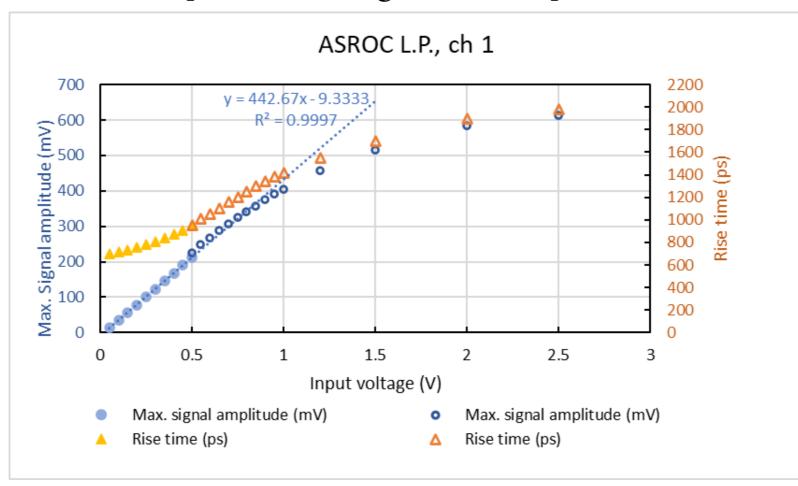

Transient Response



Front End Power vs. Bias Resistance

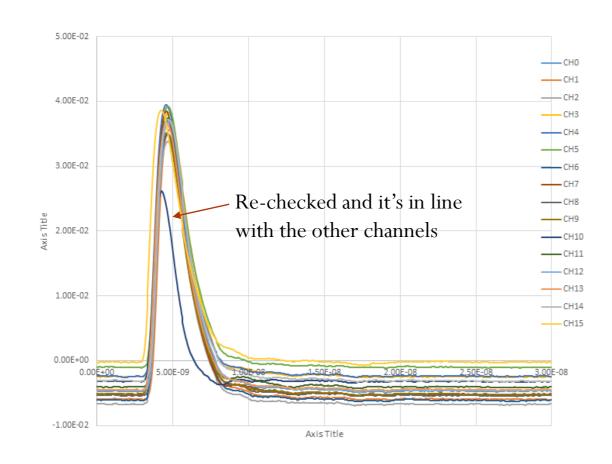

Preamp Signal and Noise - Simulation

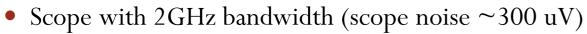
Noise was integrated from 1 Hz to 2 GHz

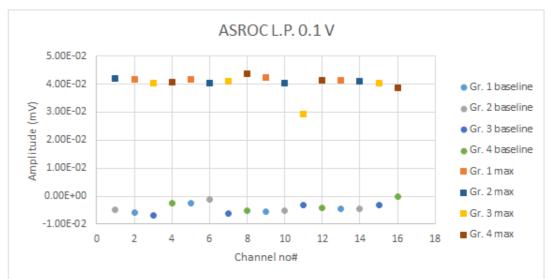

Preliminary pre-amplifier results - data

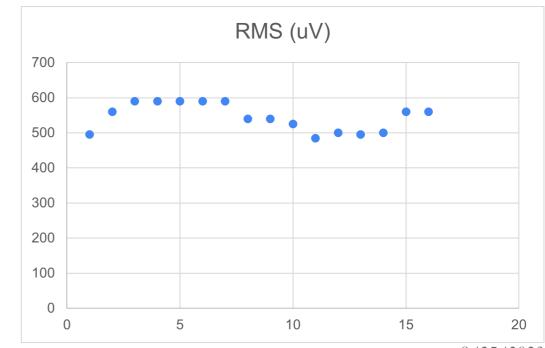
- Calibration input on the board
 - 50fF calibration capacitance on chip
- Input signal: square pulse with height as in legend
 - 50 mV to 2.5 V
 - 50 mV input \rightarrow 5mV/2fC output
- Output between ~10mV and ~600mV

Preliminary pre-amplifier results - data

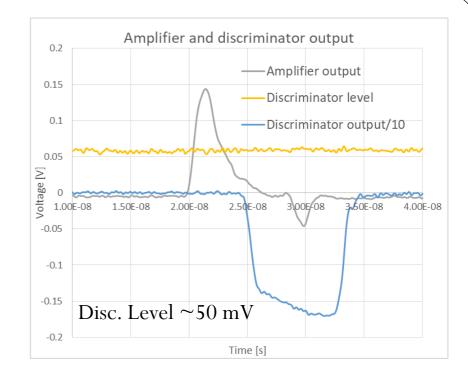

- Good linearity until ~1V input. ~2.5mV per fC (for 50fF calibration capacitance)
- Rise time between 700ps and 2ns (higher than expected)

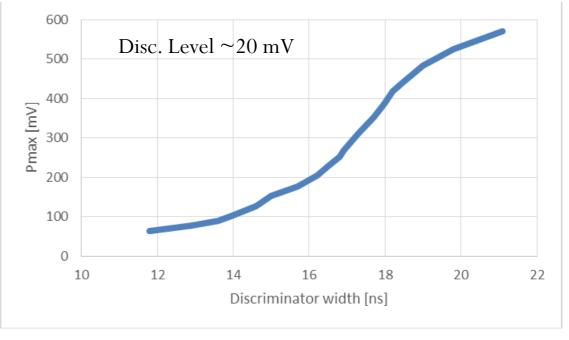



11


Preliminary pre-amplifier results - data

- Small baseline shift (<10 mV) likely induced by the buffer
- Very low noise (~500 uV) but this is almost without input capacitance (likely ~100 fF)

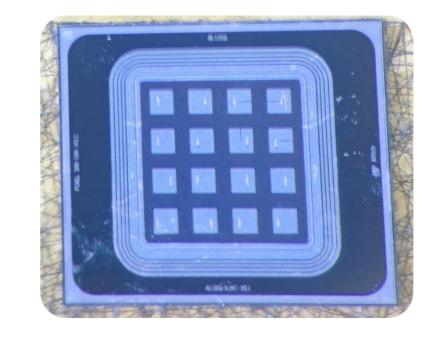


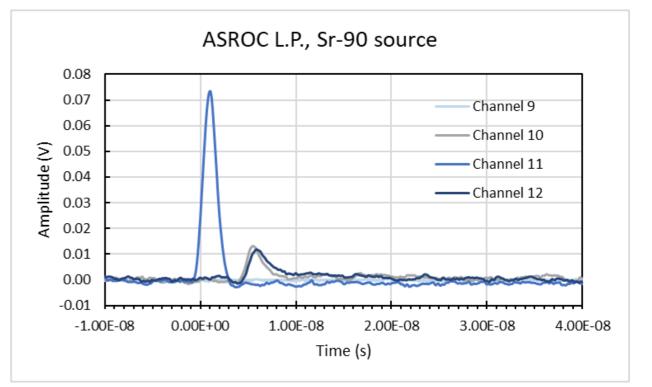

Dr. Simone M. Mazza - University of California Santa Cruz

Preliminary discriminator results - data

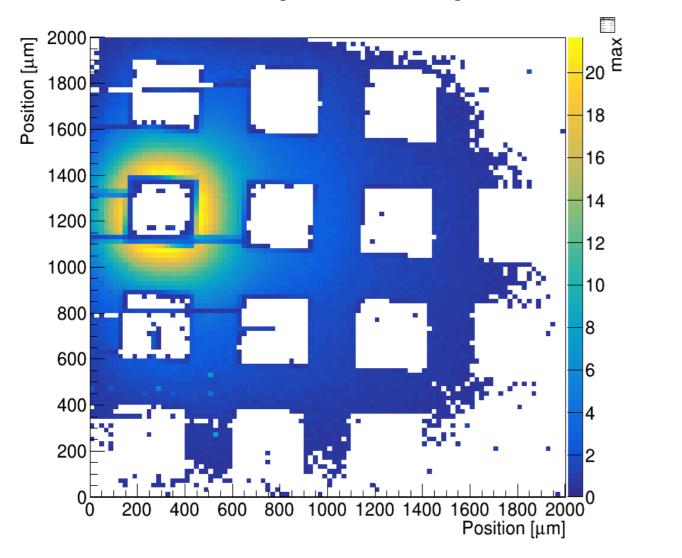
• Discriminator performance

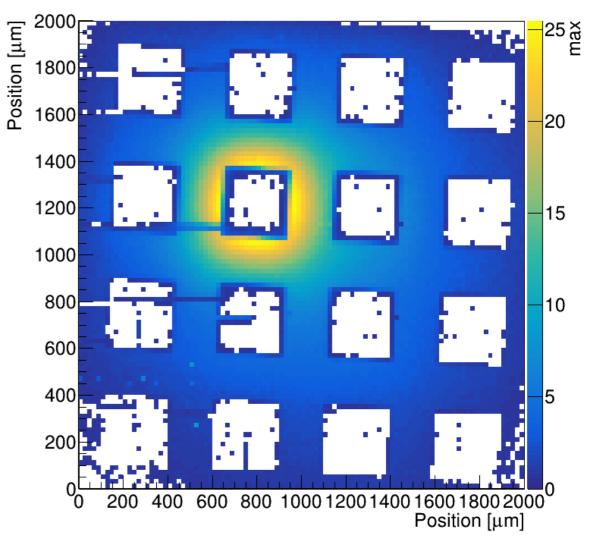
- Discriminator output is an adjustable (1.5V in the tests) step function with rise time < 1 ns
- Discriminator Jitter < 10 ps
- Discriminator level can be adjusted with external reference
- Width of the discriminator output is proportional to the pulse maximum
 - Can be used to correct arrival time for time walk

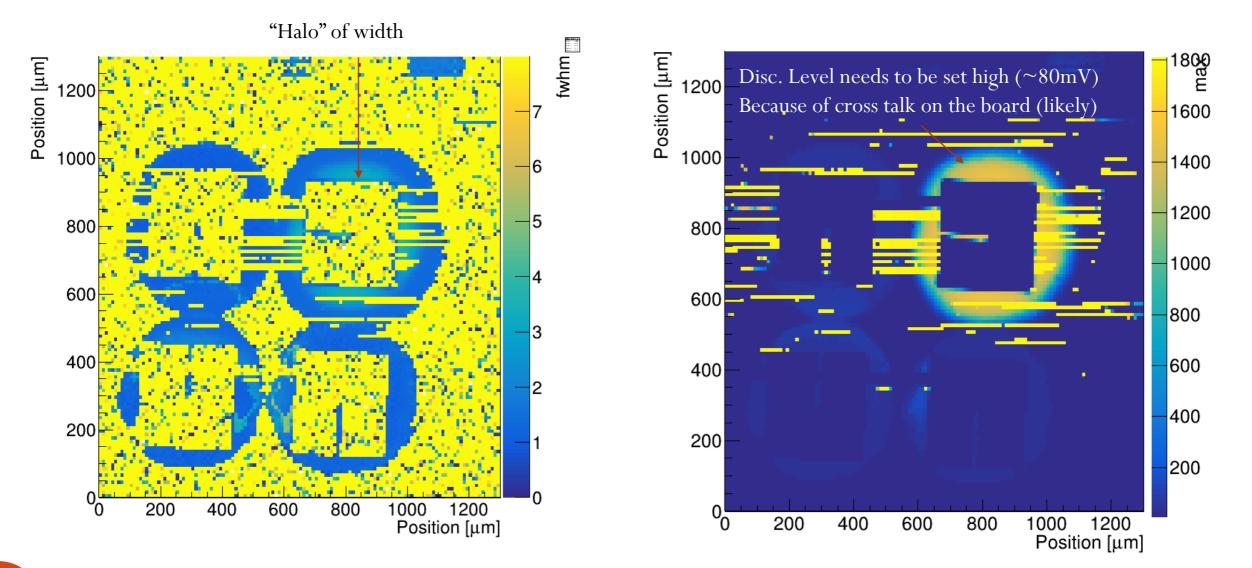




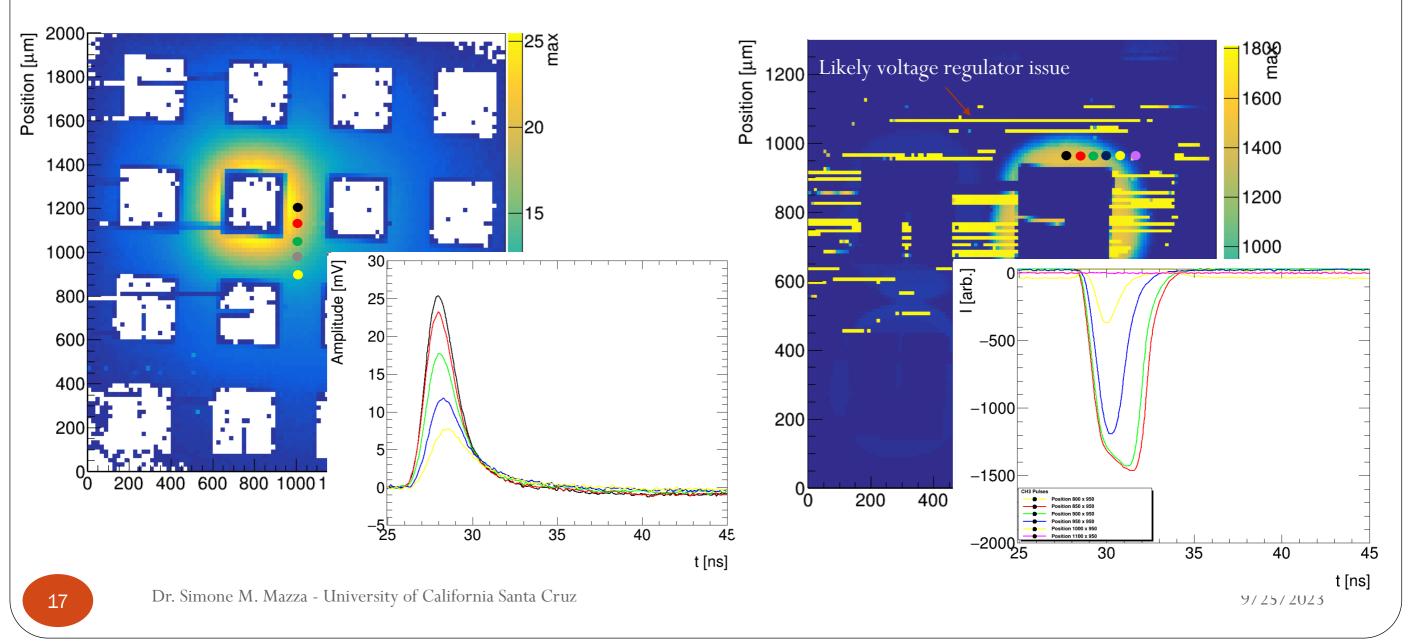
Sensor pre-amp output


Performance with sensor


- Connected to a pad AC-LGAD (from FBK RSD1 production)
 - 500 um pitch, 300x300 um pads
 - Sensor couldn't run at high gain (somewhat high leakage current)
 - For discriminator test we had to increase laser power to have larger signal
- Noise level \sim 700 uV for input capacitance of 500 fF
 - As expected!
- Tested with Sr90 beta source and TCT IR laser
- Very good S/N with sensor response
 - Observed AC-LGAD charge sharing



Sensor pre-amp TCT scan



Sensor discriminator output (laser TCT scan)

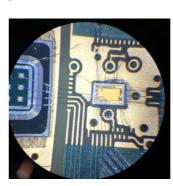
16

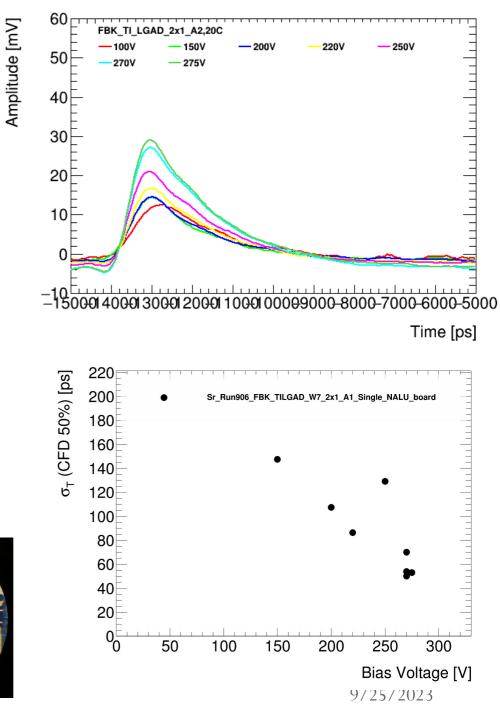
Laser TCT scan – pre-amp vs discriminator

Next steps

- Test the chip with a higher capacitance sensor (several pF)
 - Test with 1cm long strips (20um and 50um) from HPK and BNL
 - Chip noise is very dependent on input capacitance, can be used to estimated the "effective" input capacitance of sensors (CVs have large frequency dependence)
- Estimate the power consumption
 - We tried a few methods to estimate current draw but results are not consistent with expectation (power consumption is too low)
- New board loaded with MP chip
 - Issue with one component, replacement arrived yesterday
 - MP chip should drain more power but have better performance (better rise time and gain)
- Presenting at TWEPP next week: <u>https://indico.cern.ch/event/1255624/contributions/5445271/</u>

HP-SoC status


19


HP-SoC v1 (last year)

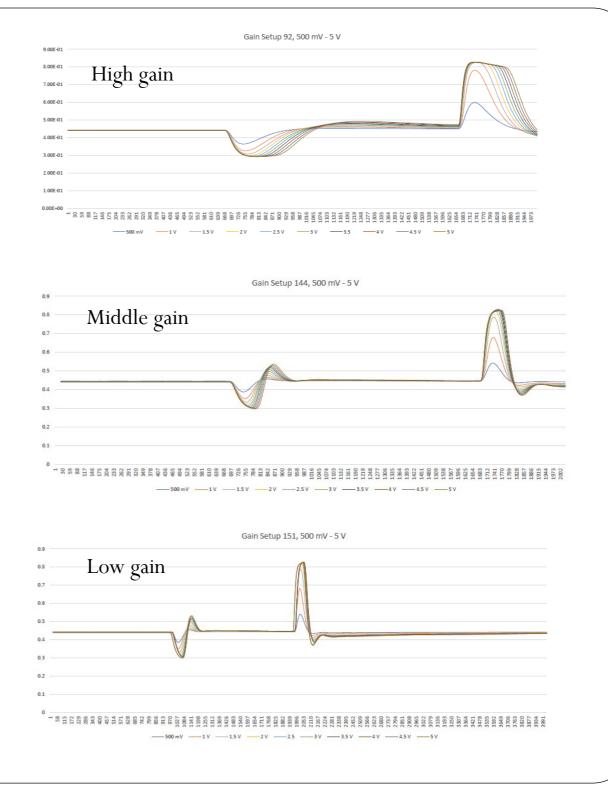
• First version (2022) had good power consumption and pulse rise time

• Issues:

- low amplifier gain and issues with digital readout
- Jitter goal was <10ps, observed was >30 ps
 - Results with 50um sensor showed 50ps time resolution
- New version with improved performance is ready!

HP-SoC v2

- New HP-SoC version and readout board arrived a SCIPP yesterday
 - 4 channels total with TiA + digital output
 - 1 ch TIA amplifier readout to check pulse
 - Expected working digital communication (via FPGA)
- Not enough time even for a brief look, but expect updates in the next meeting or via email



FAST2/3 status

22

FAST chip activities

- In the past months we probed the adjustable gain capabilities of FAST2
- Tested the three gain setting
 - Actually 8 gain settings but only 3 main ones
- Gain can be adjusted channel by channel
 - Issues with shift registry mapping that took a long time to resolve
 - Provided documentation not accurate, partial byte shifts

FAST2 shift registry map

Name		DE	F G	н	1	J	К	L M			P 0			T	U U			Z AA		AD AE	
Туре			bit in by tot bit					n byte Type	bit in by	nbit nby						bit in by n bit n b					
Global	7 223	27 CH0	1 21		Global	7	167	20 CH5	1	161	Glob	al 7			3 CH10	1 105	Global	7	6 55 CH15	1 4	
	6 222		0 21			6	166		0			6	110			0 104		6	54	0 4	
	5 221		7 21	15 26	6	5	165		7	159	19	5	109			7 103	12	5	53	7 4	7 5
	4 220		6 21	4		4	164		6	158		4	108			6 102		4	52	6 4	
	3 219		5 21	3		3	163		5	157		3	107	1		5 101		3	51	5 4	5
	2 218		4 21	2		2	162		4	156		2	106	i		4 100		2	50	4 4	4
			3 2	11					3	155						3 99				3 43	3
			2 21	0					2	154						2 98				2 4	2
			1 20	9					1	153						1 97				1 4	1
			0 20	8					0	152						0 96				0 4	0
		CH1	7 20	7 25	5			CH6	7	151	18				CH11	7 95	11		CH16	7 3	9 :
			6 20	6					6	150						6 94				6 3	8
			5 20	5					5	149						5 93				5 3	7
			4 20						4	148						4 92				4 3	
			3 20						3							3 91				3 3	
			2 20						2							2 90				2 3	
			1 20						1	145						1 89				1 3	
			0 20						0							0 88				0 3	
			7 19		1				7	143	16					7 87	10			7 3	
			6 19		'				6	142	17					6 86				6 3	
		CH2	5 19					CH7	5						CH12	5 85			CH17	5 2	
		Onz	4 19					Criti	4	140					CITIZ	4 84			Griff	4 2	
			3 19						3							3 83				3 2	
			2 19						2	138						2 82				2 2	
			1 19						1	137						1 81				1 2	
			0 19						0							0 80				0 2	
			7 19						7	135	16					7 79				7 2	
			6 19		1				6		10					6 78				6 2	
									5							5 77				5 2	
		01.10	1 10					01.10	4	132					01.140	4 76			01.140	4 2	
		CH3	3 18					CH8	3						CH13	3 75			CH18		9
			2 18						2							2 74					8
			1 18						1	129						1 73				1 1	
			0 18						0							0 72					6
			7 18		2				7	127	15					7 71	8				5
			6 18						6							6 70					4
			5 18						5							5 69					3
			4 18						4	124						4 68				4 <mark>1</mark>	-
			3 17						3							3 67					11
			2 17						2							2 66					0
		CH4	1 17					CH9	1	121					CH14	1 65			CH19		9
			0 17						0	120						0 64					8
			7 17		1				7	119	14					7 63	7			· ·	7 (
			6 17						6							6 62					6
			5 17	3					5	117						5 61				5 !	5
			4 17	2					4	116						4 60				4	4
			3 1	71					3	115						3 <mark>59</mark>				3	3
			2 17	0					2	114						2 <mark>58</mark>				2	2
			1 <mark>16</mark>	9					1	113						1 57				1	1
			0 16	8					0	112						0 56				0	0

FAST3 chip

- FAST3 chip arrived
- Improved front end and buffers
- Better dynamic range
- Available soon!
- As soon as we get it we'll start testing and report

Conclusions

AS-ROC

- SiGe chip is ready and being tested!
- Very good performance for first prototype: low noise as expected
- Low power version tested, more power version should have better performance
- Discriminator output is good
- Tested with AC-LGAD pad sensor with input capacitance <1pF
 - Good results for both amplifier output and discriminator
 - Test with several pF sensor next (AC-LGAD strips)

HD-SOC

- New iteration of the chip received with readout board received yesterday
- 4 chTiA+Digital, 1 ch withTiA output
- Applying to JLab funding for continuation of the project

FAST

26

- Digital part and mapping understood for FAST2
- FAST3 chip is ready, available for testing in a few weeks

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

9/25/2023