

Kapton Flex Hybrid R&D Update

Mathieu Benoit, Oskar Hartbrich (ORNL)

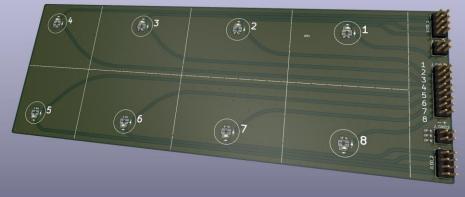
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Barrel TOF Flex PCB

- Connect 64 ASICs (+X) along stave to RDO at end of stave
 - Low voltage, bias (HV), ground
 - Differential e-links, **clocks**, slowcontrol/l²C?
 - Individual ASIC output data rate is only ~Mbit/s (based on Tonko's initial estimates)
- Low mass: 1% X/X₀ total barrel material budget
- Needs to fit barrel TOF geometry
 - ~1.2m length
- Kapton flex PCB:
 - Custom geometry "sandwich" of thin kapton and conductor layers
 - Used in other tracking detectors already

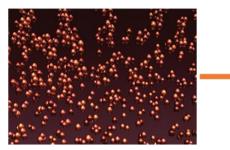
PID-TOF 3M-50M 240-500 6Gb/sec 12 EICROC / AC-LGAD Channel / Fiber counts de Considering pitches of: .5mm x 1cm, .5mm x .3cm	
---	--

Update


- ORNL engineers with the right expertise seem busy at the moment...
- Instead looking into outside engineering support now
 Have interested and capable candidates, figuring out payment...
- In the meantime: produced flex PCBs with different vendor
- Alice Bean (Kansas U.) on sabbatical in ORNL RNP group
 - Experience with long flex lines for ATLAS pixel upgrades
 - (n.b.: they seem to move away from long flex and do long twisted pair data lines for mechanical reasons)

LFHCAL Flex PCB

- ePIC LFHCAL uses Kapton flex to gather SiPM signals per layer
 - Different geometry then TOF flex, but same technology and similar conductor layout
- V1 designed ourselves, works well in testbeam
 - V2 just submitted for production with minor improvements, next testbeam in 2 weeks will show whether improvements are tangible...
- Different vendor than previous prototypes
 - Fast production, good quality, more detailed layup options etc.

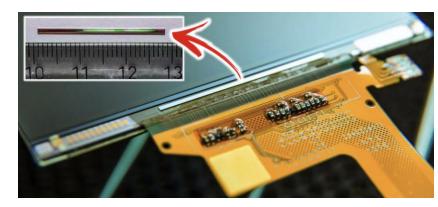


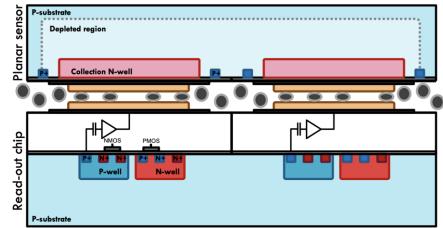
ASIC-to-Flex Interconnect (M. Benoit)

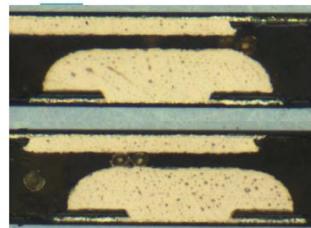
- FY'24 continuation: produce flex prototype with connected readout ASIC
- Anisotropic Conductive Films (ACF)
 - Technology developed for the LCD Display industry
 - Low cost, no lithography involved
 - New method allow arrangement of microparticles (i.e. with Magnetic Field) to reach finer pitch with better yield
 - ORNL in contact with multiple industry partner to investigate these bonding methods

BEFORE CURE Randomly dispersed

omly dispersed particles


WITHIN 10 SECONDS


Conductive columns fully form


and are locked in place by the

curing of the polymer matrix

Source: https://sunrayscientific.com/solutions/

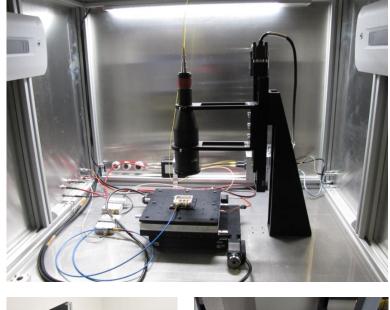
5 **CAK RIDGE** National Laboratory

Barrel Flex

SET FC150 precision bonder

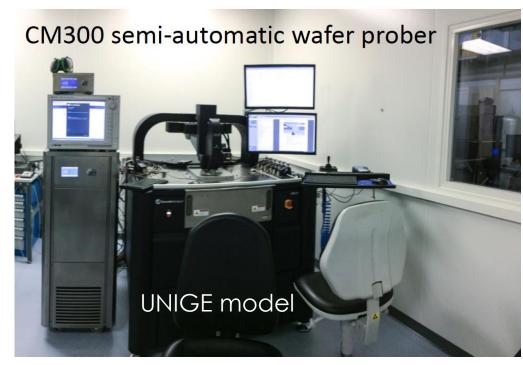
ORNL will purchase a FC150 flip-chip bonder in FY'24 from lab funds

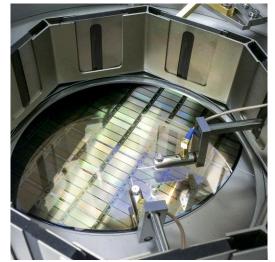
- Up to 150mm substrate and chip handling
- +- 1µm post-bonding accuracy
- +- 1µRad parallelism with active levelling
- Pressure up to 200 kg
- Temperature up to 400C (~1C/s)
- Can be operated in fully automated mode
- Liquid dispenser integrated in the machine for glue, underfill distribution

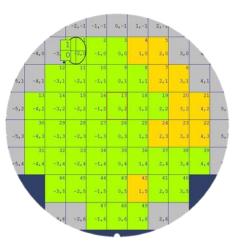


Other ORNL News

- TCT Setup finally arrived...
 - 1064nm, 550nm lasers
- New wire bonder available (*)






FormFactor CM300xi probe station

We **plan** to purchase a 300mm semi-automatic prober that will be installed at ORNL:

- Accommodate 5-300mm sample size
- Light tight and airtight thermal chamber
 - -60C to 125C testing range
- Probes :
 - 8 x DC probe for parametric measurement
 - 2 x RF probes
 - 1 x XYŻ robotic probe with optical probing
 - Probe card holder for open, closed top probe cards
- 4 x Cameras :
 - Top view up to 1000x
 - Bottom-up view (probe alignment)
 - Side view (wafer surface alignment)
 - Auxiliary view (closed top probe card alignment)
- Fully automated alignment of wafers and dices
- Fully programmable for unattended testing

Summary/Timeline

- Designed and produced more Cu-flex foils by ourselves
- Engineering support at ORNL difficult to find, looking outside ORNL now
 - Simulations, design, expertise...
- Continue prototype evaluations in our lab
 Using DPTS CML driver as reference
- Investigating low-cost interconnect technologies for ASIC-to-Flex bonding
- Significant investments by ORNL into microelectronics equipment

Backup

Budget Request FY'24

Inst.	Resource	FTE $(\%)$	Budget (k\$)
	Barrel Low-Mass Service Hybrid R&D		
ORNL	Electrical Engineering + Technician	10	10
ORNL	Staff Scientist	10	0 (in-kind)
ORNL	Materials and Supplies	-	10
ORNL	Production and Bonding	-	10
ORNL	Low cost interconnect	-	15
Total			45

Table 15: eRD109 Budget request for the continuation of the ORNL flexible Kapton PCB R&D in FY24, starting from December 1st 2023. All entries in thousands of dollars.

11

Budget Request FY'23

Inst.	Personnel		Budget (k\$)
	Readout and Timing Distribution R&D		
BNL	Electrical Engineer		38
BNL	Staff Scientist	$2 \mathrm{x} 0.2 \mathrm{FTE}$	0 (in-kind)
BNL	Xilinx Dev. Kit		4
BNL	Timing Chips + Boards		15
BNL	Travel Support		5
	Barrel Service Hybrid R&D		
ORNL	Electrical Engineer		32
ORNL	Staff Scientist	$0.1 \; \mathrm{FTE}$	0 (in-kind)
ORNL	Materials and Supplies		8
ORNL	Xilinx Dev. Kit		4
	Endcap Service Hybrid R&D		
Rice	Electrical Engineer	$0.15 \mathrm{FTE}$	18
Rice	Faculty	$0.1 \; \mathrm{FTE}$	0 (in-kind)
Total			116

Table 22: Budget request for the TOF system readout electronics R&D in FY23. All entries in thousands of dollars.

Test Structure and Measurements

- Design test prototype: As long as possible
 - Differential link loops at various lengths, geometries (?)
 - LV/HV conductors
- RF testing:
 - Confirm simulations: bandwidths, insertion losses, crosstalk
 - Test link speed/BER with FPGA/established line driver, edge jitter
 - Eventually integration into timing distribution test bench at ORNL
- DC testing:
 - Acceptable voltages, currents, resistances
- Mechanical:
 - Thermal cycling
 - Handling, bending, folding

Simulation and Design

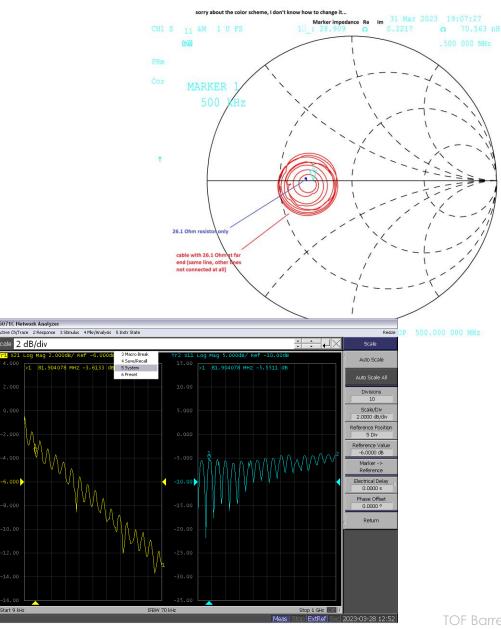
• LV/HV

- Required material budget for current requirements
- How much DC-DC converters for given ASIC?
- Serial powering?
- Design requirements for HV conductors
- Differential links:
 - Insertion losses, analog bandwidth for different lengths
 - Crosstalk on clock line(s)!
 - Ultimately informs output drive strength
- Common flex foil, or separate for LV/HV/RF?
- Supported by ORNL electrical engineering

Technological Survey

- Kapton-Cu flex foils are available from various vendors
 - Cheap (~\$100/3pcs), quick (3-4 weeks)
 - Can produce many prototypes for a more experimental approach
- Low mass Kapton-Al is more specialized and expensive
 Not worth it for prototypes at this point
- Max size: 1m?
 - Depends on vendor, but can fit very long traces on moderately sized foils in any case...

The "Experimentalist Approach"


- Still identifying the right ORNL engineering resources...
- Producing cheap Cu-flex prototypes instead
 - 2x 1.5m differential pairs on 40cm flex
- Using DPTS (ITS3 test structure) CML driver as test bench driver
 - 65nm CMOS line driver
- First attempt does not yield useful data on the scope
 - Not sure if due to transmission line or connectors

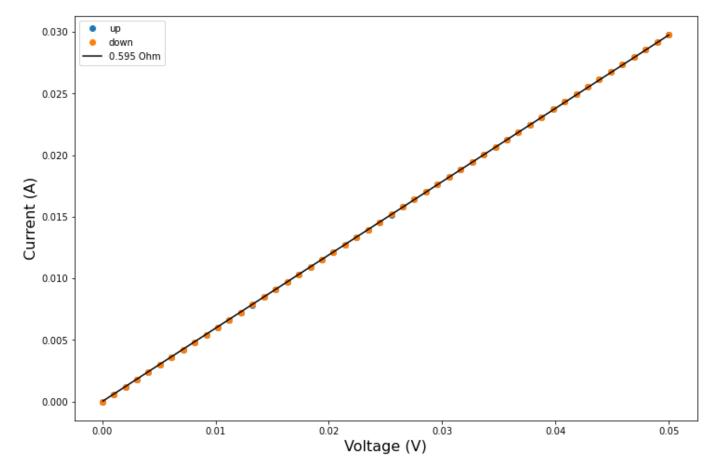
Vector Network Analyzer Measurements

- Measurements by G. Visser (Indiana) and ORNL
- Our first attempt at transmission line is not 500hm...
 - "Easy" fix for next attempt...

2 dB/div

17

Available Equipment


- 4ch Vector Network Analyzer available
 - Insertion loss
 - Inter-line crosstalk
 - Need proper 50R transmission line to make sense of measurements
- Time domain reflectometer still looking
 - Characterize impedance mismatches along length of transmission line

DC Resistance Measurements

- 0.5950hm along strip
 - 1.49 m length, 1mm pitch, 35um thickness
 - 2.35E-8 Ohm*m (c.f. 1.8E-8 Ohm*m for Cu)
- Inter-strip resistance
 - Could not get reliable measurement so far (capacitive effects dominate)
 - Tested up to 500V without notable leakage

19