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Chirality, parity violation . ..

fundamental observation ... deep QFT problems
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Preview: Procedure in a nutshell
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Preview: Procedure in a nutshell
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Ward identity compensated by
violated special c.t.

(our main task)
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Preview: Procedure in a nutshell
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Ward identity compensated by Alternative:
violated special c.t. breaking via ¢ term

(our main task) (tool)
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Outline

@ Introduction
@ Dimensional regularization and s
@ Symmetries and symmetry identities
@ Example breaking via s problem and required counterterm
@ Example alternative calculations

9 Computation of symmetry-restoring counterterms
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Necessity for regularization

Regularization is necessary to define QFT at the quantum level

@ many different options

L =1 cutoff-scale A DREG

@ in principle, all regularizations can be used
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Necessity for regularization

Regularization is necessary to define QFT at the quantum level

@ many different options

cutoff-scale A DREG
f|p|</\ d4p M4_D f de

@ in principle, all regularizations can be used

@ often regularizations break symmetries (Lorentz, gauge inv.. ..

@ can happen in DREG via ~5-problem — topic of this talk!
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The problem: v5 and DReg

Three properties in 4-dimensions:

{757 ’7“} =0,
Tr(ysn"y"yPy7) = 4ie™7,

Tr(r1 F2) = Tr(F2F1) .

Inconsistent in D # 4 (can prove that trace=0).
Give up at least one = many proposals!
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The problem: v5 and DReg

Three properties in 4-dimensions:

{7s,7"} =0, (1)
Tr(ysyHy"yPy7) = 4ietP?, (2
Tr(M42) = Tr(2ly). (3)

Inconsistent in D # 4 (can prove that trace=0).
Give up at least one = many proposals!

@ “Naive” anticommuting? Reading point? ... Many alternatives!
@ Often limited range of applicability

@ BMHYV (non-anticommuting, very complicated, breaks gauge inv.
But unitary, consistent)
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BMHV scheme — non-anticommuting s

QFT consistent, unitary; breaks symmetries, complicated
@ “D-dim space” split into pure 4-dim space @ (—2¢)-dim space

Xt = X"+ X+
V5 = 70717273
{75,9"} =0
[v5,9"] =0

Our idea: No-compromise approach to BMHV — apply it and
accept/deal with its difficulties!

@ Take seriously, apply to 1-loop, 2-loop ... EW calculations
@ Here — Technical task: restore gauge invariance
@ Progress will feed back to other schemes
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The problem for chiral gauge theories using BMHV
E.g., only Pty should interact! What is £ in D-dim?

Liinsint = Yiv" Optp + VP PrAY + ...
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The problem for chiral gauge theories using BMHV
E.g., only Pty should interact! What is £ in D-dim?

Liinsint = iV 0putp + PPy PrAY + ...

@ " must be D-dimensional (else: propagator not regularized)
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The problem for chiral gauge theories using BMHV
E.g., only Pty should interact! What is £ in D-dim?

Liinsint = iV 0putp + PPy PrAY + ...

@ " must be D-dimensional (else: propagator not regularized)
@ P;~+"Pg (or alternatives like v Pg) not fully D-dim!
@ Always: Mismatch D versus 4 breaks gauge invariance of Lp
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The problem for chiral gauge theories using BMHV
E.g., only Pty should interact! What is £ in D-dim?

Liinsint = iV 0putp + PPy PrAY + ...

@ " must be D-dimensional (else: propagator not regularized)
@ P " Pg (or alternatives like *Pg) not fully D-dim!
@ Always: Mismatch D versus 4 breaks gauge invariance of Lp

@ Leads to breaking of gauge invariance, Ward/Slavnov-Taylor
identities

£0 {need symmetry-restoring
counterterms
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Symmetry identities (Ward, Slavnov-Taylor) are
crucial:
“S(rreg + rCt) — on

@ Unphysical states/negative norm

@ Unitary and gauge independent physical
S-matrix

They are usually manifestly valid in DReg
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Construction of Slavnov-Taylor identity
@ Ghosts for all generators — BRST:

Sp = Caégauge,aﬁp

@ BRS transformations of ghosts <> s> = 0:

1
SCy = ngabccbcc

o SIavnov—Taonr Operator S(I) = 0 aka “Lee identities/Zinn-Justin identity”)

or
= [ a*x st 5

@ Add sources Ly = K,,Sp; for composite operators

. 5r 5r
/ d'x 21(%)
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Concrete identities

identities”

In QED-like theories: Slavnov-Taylor identity S(I') = 0 ~~ “Ward

Pullan =0
P =0

Pulh, 5  €Q(Z(py) — (p;))
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Concrete identities

In QED-like theories: Slavnov-Taylor identity S(I') = 0 ~~ “Ward
identities”

Pulaa =0
Pt = 0
Pullp5 o €Q(X(py) — X(py))
@ Case 1: regularization preserves identities
~field/parameter renormalization transformation

@ Case 2: regularization breaks identities
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Concrete identities

In QED-like theories: Slavnov-Taylor identity S(I') = 0 ~~ “Ward
identities”

Pur%\ =0
Pul gana =0
Pullp5 o €Q(X(py) — X(py))

@ Case 1: regularization preserves identities

@ Case 2: regularization breaks identities

~~add also special counterterms which satisfy “S(I'*") = —A”
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Example: QED Ward identity valid in DReg

Pulyn = 0?2?

Check QED transversality of photon self energy

B r(kv" (K + p)y")
pu/dD K2(k + p)2
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Example: QED Ward identity valid in DReg

Pulyn = 0?2?

Check QED transversality of photon self energy

B Tr(ky" (K + p)v")
- [ o K2(k 1 p)?

using p = (K + p) — K gives zero:

/dD k+p2Trkfy /dD k2Tr(k+p)7)_
(k + p)? k?  (k+p)?
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Symmetry identities (Ward, Slavnov-Taylor) are
usually manifestly valid in DReg!

But sometimes not!
@ How can DReg break a symmetry? ~s5-problem!

@ What does the breaking look like?
@ How can we repair it?
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Warm-up exercise:
simple divergent one-Ioop integral

/dD k+p) = 1+ finite
€
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Warm-up exercise

simple divergent one Ioop integral

[ %
simple tensor integral

Kkt KkY
D
/dkk2

K+p)2

1
L.
k+p 6+ inite

1
—php¥ —
3. PP

v ini
26p g"" + finite
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Warm-up exercise:
simple divergent one-loop integral

/dD k+p =1+ finite
€

simple tensor integral

Kkt KkY 1 1
D v 2 Ly [
/d kk2(k+p)2 = 3PP qg P9 finite

integral with “evanescent numerator” (multiply with g,,,.!)

/aerL _ e + L + finite
Kkt p2z 3 T8

.. produces div-evanescent AND finite, non-evanescent terms!
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Check transversality of photon self energy in “chiral QED”

- Tr(KPry" PL(K + p)PrY"PL)
_pu/de K2k T p)?
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Check transversality of photon self energy in “chiral QED”

- Tr(KPry"PL(K + p)PrY" PL)
_pu/de K2k T p)?

extracts purely 4-dim parts in numerator!
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What happens if we do the numerator algebra in purely 4-dimensions?

_ Tr(K5" (K + p)7" L)
_pN/de K2k T p)?

using the same method, we cannot cancel anymore ~~ nonzero!

v 1 10 —U=V =2 —2—nv
F2a(P)lfn, aep ~3 [ (3 2 In(—pz)) (P'p’ ~P°g") - p°9" ] :

Step 1: Regularization breaks transversality! Gauge invariance is
broken by div-evan. plus finite, non-evanescent, local terms!

J
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What happens if we do the numerator algebra in purely 4-dimensions?

B Tr(K7(K + )7 PL)
pﬂ/de Rk T D)

using the same method, we cannot cancel anymore ~~ nonzero!
(AT (10 _ 2| 2\ \ (BHEY _ FRAM) _ AN
aa(P) i, XQED ~3 | | 3 n(—p%) ) (PP —P°g"") —p°g"| .

. —1- _o-
Step 2: restoring c.t. here: z;ct,XQED ~ ?AuazA" +...
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This is how the breaking can look like and how it can
be repaired.

But what is a more efficient way to compute the
breaking?
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Step 3: More efficient, direct calculation of breaking J

ifa-Th M =

and thus sufficient to determine symmetry-restoring c.t.s
but the calculation is simpler and more direct
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Preview: Procedure in a nutshell
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Preview: Procedure in a nutshell
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Ward identity compensated by
violated special c.t.

(our main task)
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Preview: Procedure in a nutshell

——i)—&—k

a1,
A P
p a2
P KN
Ward identity compensated by
violated special c.t.

(our main task)

sfktg;/d4x{...+ éyR)A FA (5+5>(3”,§)2(1Z/i5PR¢/)}~

[m] = =
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Preview: Procedure in a nutshell
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k3 a2,
Ward identity compensated by Alternative:
violated special c.t. breaking via ¢ term

(our main task) (tool)
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Preview: Procedure in a nutshell

——i)—&—k

q1
—
q1 p
—_— o
q2
2 —
p q2

Ward identity compensated by Alternative:
violated special c.t. breaking via ¢ term
(our main task) (tool)

see also: SUSY in
DRed (3-loop) [DS’05, Hol-
gk,DSéOS, DS,Unger'18]
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Systematic task therefore

@ Find all such symmetry breakings by regularized Green functions
@ Show that they can be “repaired” by adding suitable counterterms
@ Determine these counterterms

Tools: Slavnov-Taylor identities, quantum action principle
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Outline

@ Introduction

9 Computation of symmetry-restoring counterterms
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Plan here: chiral “QED” (only Pgry) at 1-/2-loop

[Bélusca-Maito, llakovac,Kuhler Mador-BoZinovi¢, DS "21]

1. Define D-dimensional Lagrangian compute symmetry breaking
2. Determine 1-loop UV divs ~~ Lggt

3. Determine 1-loop violation of Slavnov-Taylor identity

4. Determine 1-loop symmetry-restoring counterterms ~~ L

5. Repeat at 2-loop new features?
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Plan here: chiral “QED” (only Pgry) at 1-/2-loop

[Bélusca-Maito, llakovac,Kuhler Mador-BoZinovi¢, DS "21]

1. Define D-dimensional Lagrangian compute symmetry breaking

4. Determine 1-loop symmetry-restoring counterterms ~~ L
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1. Define D-dimensional Lagrangian
Abelian theory like U(1)y-part of SM, only ¢g; interact

Description of symmetry: gauge invariance — BRST invariance —
Slavnov-Taylor identity is required for renormalized theory: S(I'ren) = 0
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1. Define D-dimensional Lagrangian

Abelian theory like U(1)y-part of SM, only g, interact

Description of symmetry: gauge invariance — BRST invariance —
Slavnov-Taylor identity is required for renormalized theory: S(I'ren) = 0

L has D-dim kinetic but 4-dim interaction term!

»Cfermions = @,'Wi + eyF:’i%iAwﬂi .

Dominik Stockinger
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1. Define D-dimensional Lagrangian
Abelian theory like U(1)y-part of SM, only ¢g; interact

L breaks D-dim gauge/BRST invariance
= and leads to breaking of tree-level Slavnov-Taylor identity

Sa(So) = /ddX (eVri)c {wl <<?PR + «?PL> Tﬁz} :

- N N This is the core of the difficulties.
/'\\ = (eVri) (9’1 Pr + HZPL) .5 Can be written as a
ne local Feynman rule
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2. Compute Green functions to determine UV divs
Many 1-loop diagrams (not shown) ~~ divergent counterterms:

First part as usual

second part is special for BMHV, sym-breaking and “evanescent”
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3. Determine 1-loop violation of Slavnov-Taylor id.

Ultimate structure at 1-loop (finite ct to be determined)

1
r(DF)leg =1t S;ct + Sf10t7
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3. Determine 1-loop violation of Slavnov-Taylor id.
Ultimate structure at 1-loop (finite ct to be determined)
1

r(DF)(eg =1t S;ct + Sf1ct7
Evaluate STI at 1-loop order, div-parts cancel, fin-parts t.b.d.

1 1 1

Sa(TSheq) = Sa (M) ins + SaSiy

Left term means: breaking of regularized STI; must be computed.

In principle this corresponds to checking all STIs/Wis, e.g. Fermion 2-point/3-point function etc.
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3. Determine 1-loop violation of Slavnov-Taylor id.

Ultimate structure at 1-loop (finite ct to be determined)
1

r(DF)(eg =1t S;ct + Sf1ct7
Evaluate STI at 1-loop order, div-parts cancel, fin-parts t.b.d.

1)y _ 1 1

Sa(Mbheg) = Sa(T™)finite + S Sty
Left term means: breaking of regularized STI; must be computed.
In principle this corresponds to checking all STIs/Wis, e.g. Fermion 2-point/3-point function etc.
But can be simplified by using quantum action principle (BM)
Sg(rMy =AM

Bonneau (1980): only power-counting divergent diagrams matter!
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The complete set of power-counting divergent 1-loop diagrams with
insertion of A:

AH AD1

A,
Results mean: breaking of three concrete WI/STls.

They have the form </2¥aneseent . (joca))
~- local counterterms can repair the symmetry!

(There is an additional diagram corresponding to the fermion triangle loop and the true anomaly (assumed absent))
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4. Determine symmetry-restoring counterterms

|
Sd(r(1))|finite + Sdsgct =0
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4. Determine symmetry-restoring counterterms

|
Sd(r(1))|finite + Sde1ct =0
Requiring this renormalized STI to hold leads to the result

e ~Tr(V3) 5 25, € T(VE) 5
S = 12 | ¢ {%Am ao ST ey

+ (%) (VL) (”@jié_j Pr w,-) } :

This is the full 1-loop result of symmetry-restoring counterterms for this
chiral QED in BMHV scheme for our Lagrangian.

Finite, NON-evanescent counterterms. Not gauge invariant!

Modify both self-energies and A* interaction
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5. Repeat at 2-loop (subrenormalization!)
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2-loop Slavnov-Taylor breaking — many diagrams of four types:

pot! Ap1
¥ Va
2-loop insertion of A

Pt tp1
vh Vo

ot tp1
v o
. . 1
1-loop insertion of A,

ot
Jj i
B waf

insertion of A into 1-loop diagram with 1-loop ct insertion

Sum gives Sy(F®)|sinite =local. Can cancel by local counterterms
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Determine sym-restoring counterterms at 2-loop

|
Sa(T®) finite + SaS2, = 0

Requiring this renormalized STI to hold leads to the result
SE, = —/d“ Tr(yR) A FA & (yR)( A?)?
(1672)

OB (g OB - 5 TOB) (70 P w,-)}

This is the full 2-loop result of symmetry-restoring counterterms for this
chiral QED in BMHV scheme for our Lagrangian.

Finite, NON-evanescent counterterms. Not gauge invariant!

Same structure as at 1-loop
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Application: restoration of 2-loop photon self energy
This is how the breaking looks like:

p

fin-part iet 673 - o o
3-2567r4[(23 6 log(—p”) 244(3)) (P"p" —P°9")

11
RV
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Application: restoration of 2-loop photon self energy
This is how the breaking looks like:

p

fin-part ie* 673
* 3.05674| \ 23

6 log(—F?) - 244(3)) PP — P°g")
11 _ o
+ 5 (PP~ ng“”)] :

The breaking is compensated by the counterterm of the previous slide:

4

Finet =3 2564 167
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Generalization to YM [Bélusca-Maito, llakovac, Mador-Bozinovié, DS, 2020]
symmetry-restoring counterterm for YM+fermions+scalars (1-loop)

1 _
Sfct,restore -

*o {0 (5500 + Sace — [ o x GiPaY) + S0
16 6 3

+gz TR:):de /d4X g42 Gquchu _ (CH mn /d4 GaGbu(qu)n
1 (vE)" Tfay,gn .. B
+g° (1 L1 5 ) C2(R)Sg, — i /d“x 946 Pry

£Co(G)
-g° 4 (SRoys + Shogg)

Finite, NON-evanescent counterterms. Not gauge invariant!
Modify all self-energies and some interactions!
But rather compact, universal, can be/is implemented e.g. in FeynArts
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3-loop outlook — photon self energy breaks
transversality (preliminary) [Matthias Weisswange]

~y 3
IrA!;\(p)‘div =

1

x 1;62)3 (5rTORTOR - ZT08) &

+(12;o (VR TH(VR) + 232“(%)) ](pp -p'g")

ie® 1 6 529 1
(1672)° {— 15 TR 5+ <%Tr(y,q) r(V8) + Tog0 7 (ny)) =z

4187 49427 544 1Mo
+ (32400Tr(y"”') ") + (64800 ﬁ@) Tr(y”)> E} g

+

/e o
* dem)p (1080Tr(yH)Tr(3’R) Tr(yg)) -r'g
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General Summary

Background:

@ ~5 is problematic in DReg, BMHV scheme is rigorous

@ ~5 non-anticommuting, distinguish 4-dim and e-dim quantities

@ gauge invariance broken already in £p and at loop level
Renormalization in general: Tren = MNreg + It

@ [en should be finite

@ S(lren) = 0 should hold

@ this fixes divergent and symmetry-restoring counterterms

@ in addition, counterterms derived from field/parameter
renormalization may be added
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General Summary

Results:
@ Symmetry-restoring counterterms: 1-loop YM, 2-loop abelian

@ Method established: determine violation of Ward/Slavnov-Taylor
identities from A-diagrams

@ Result has compact simple structure
Outlook:
@ 2-loop YM, 2-loop EWSM, 3-loop
@ automatize, implement in FeynArts, FeynRules etc
@ alternative £p, schemes (FDH, DRed, etc, other 5 schemes)
@ RGEs
@ Fierz problem. ..
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2. Compute Green functions to determine UV divs
Many 1-loop diagrams (not shown) ~~ divergent counterterms:

1 _ ol 1
Ss.ct - Ssct,inv + Ssct,break )
First part as usual

4! 57} 6Z)
Sl = 5 La+ Lo+ —5"

el
L¢R + e_:LeA )
second part is special for BMHV, sym-breaking and “evanescent”

—he2 Tr(V2 — 1 o
Slctbreak = TWQ': (3 ) (Z(SAA — Saa) + /ddx EA“(‘?ZAM) :

Divergences for evanescent operators with independent coefficients,
beyond the usual field/parameter renormalization

well-known in DRed: needed for unitarity/finiteness at higher orders
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2. Determine UV divs at 2-loop

Many 2-loop diagrams (not shown) ~~ divergent counterterms:

2
Ssct Ssct inv + Ssct,break )

First part as usual ~ field and parameter renormalization
second part is special for BMHV, “sym-breaking” (partially non-evan.)

et Tr(VE — ‘
Ssct break = ~ 555, (3 ) (Q(SAA —Saa) + (—6 - —) /dd — AR
R)>

_2566‘; (se ( (Y )2__Tr(y”)>
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3. Determine 2-loop violation of Slavnov-Taylor id.
Ultimate structure at 2-loop (fct to be determined)

2
r(DF)§eg =ré 4 Sszct + Sf20t )
Evaluate STI at 2-loop order, div-parts cancel, fin-parts t.b.d.
Sd(rgp);eg) = Sa(F®)finite + SaSey
Left term (breaking of regularized STI) must be computed, use g.a.p.

Sq(r®)y = A-T@ 4 Al T
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Symmetry transformations of Green functions

oi(X) = 9i(x) + d9i(x), L(x) — L(x)+ dL(x)
How do Green functions behave?
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Symmetry transformations of Green functions

oi(X) = 9i(x) + d9i(x), L(x) — L(x)+ dL(x)
Path integral:
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Symmetry transformations of Green functions

oi(X) = 9i(x) + d9i(x), L(x) — L(x)+ dL(x)
Path integral:

Z(J) = / D¢ e/ £+I9
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Symmetry transformations of Green functions

oi(X) = 9i(x) + d9i(x), L(x) — L(x)+ dL(x)

Z(J) = / D¢ e/ £+I9

(measure invariant) = /D(b eif£+6£+J¢+J5¢
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Symmetry transformations of Green functions

oi(X) = 9i(x) + d9i(x), L(x) — L(x)+ dL(x)

Z(J) = / Do el £+
(measure invariant) = /D(b eif£+6£+J¢+J5¢

(1st order in &) = /’D¢) (1 +lf5£+J5¢)elfﬁ+J¢
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Symmetry transformations of Green functions

oi(X) = 9i(x) + d9i(x), L(x) — L(x)+ dL(x)

Z(J) = / D¢ e/ £+I9

(measure invariant) = /D(b eif£+6£+J¢+J5¢
(1st order in &) = /D¢) (1 +II5E+J5¢)eIfE+J¢
result: 0= /D()b (,f&c + J5¢)eif£+J¢
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Symmetry transformations of Green functions

oi(X) = 9i(x) + d9i(x), L(x) — L(x)+ dL(x)

Z(J) = / D¢ e/ £+I9

(measure invariant) = /D¢ eif£+6£+J¢+J5¢
(1st order in &) = /D¢ (1 +lf5£+J5¢)elf£+J¢
result: 0= /D¢ (,f&c + J5¢)eif£+J¢

Formal “derivation” for 6L = 0 gives form of ST identities

((601)d2...) + (91(62)...) +...=0
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Symmetry transformations of Green functions

oi(X) = 9i(x) + d9i(x), L(x) — L(x)+ dL(x)

Z(J) = / D¢ e/ £+I9

(measure invariant) = /D¢ eif£+6£+J¢+J5¢
(1st order in &) = /D¢ (1 +lf5£+J5¢)elf£+J¢
result: 0= /D¢ (,f(S[’ + J5¢)eif£+J¢

“derivation” is valid in DReg and gives breaking paco: s o) soneizs0s.00125]

((0p1)p2...) +{P1(dd2)...) + ... = —i{p1¢2...([IL))
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Symmetry transformations of Green functions

oi(X) = 9i(x) + d9i(x), L(x) — L(x)+ dL(x)

Z(J) = / D¢ e/ £+I9

(measure invariant) = /D¢ eif£+6£+J¢+J5¢
(1st order in &) = /D¢ (1 +lf5£+J5¢)elf£+J¢
result: 0= /D¢ (,f&c + J5¢)eif£+J¢

This is exactly true in DREG (where 6£ might be # 0)

((0p1)d2...) + (61(0¢2) ...) + ... = —i{p12...([L))
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Symmetry transformations of Green functions — really

Regularized quantum action principle

((601)p2...) + (H1(0¢2)...) + —i{p102...([0L))

Interpret this as an identity between regularized Feynman diagrams
@ becomes a property of regularization scheme, does not
necessarily hold (no fundamental QFT requirement)

@ if desired, must be proven for each regularization

DREG: [Breitenlohner, Maison '77],

@ valid in srHz: [Lowenstein et al '71],
DRED: [DS '05]
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Symmetry transformations of Green functions — really

Regularized quantum action principle

((601)p2...) + (H1(0¢2)...) + —i{p102...([0L))

Interpret this as an identity between regularized Feynman diagrams

ldea of proof in DREG/DRED: look at possible Wick contractions

@ 0L = 0Lquadratic + 0 Lint, 0 Lquadratic = (6¢;)Djjd;
@ Use properties of DREG/DRED: D is inverse propagator even on
regularized level, scaleless integrals vanish

@ then, combinatorics leads to above identity
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