Frontiers of parton-shower accuracy

HET seminar BNL - 12/10/2023 Melissa van Beekveld

 $\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{A\nu} F^{A\nu} \\ &+ i F \mathcal{D} \mathcal{F} + h.c. \\ &+ \mathcal{F} \mathcal{D} \mathcal{F} + h.c. \\ &+ \mathcal{F} \mathcal{D} \mathcal{F} \mathcal{F}_{3} \mathcal{F}_{4} + h.c. \\ &+ |\mathcal{D}_{A} \mathcal{F}|^{2} - V(\mathcal{F}) \end{aligned}$

How to relate theory to what we see in actual experiments?

We use Monte Carlo generators!

Components of an LHC event

PDFs / beam remnants

- Parton shower $\mathcal{O}(1-100)$ GeV
- Hard scattering $\mathcal{O}(0.1-1)$ TeV
- Hadronisation $\mathcal{O}(1)$ GeV

+ pile up, underlying event, multipleparticle interactions (MPI)...

Monte-carlo generators available for every step of the process

Components of an LHC event

PDFs / beam remnants Dorton obource

- Parton shower
 Hard softering
- Hadronisation

Basics of a parton shower (PS)

- Described by the $SU(N_c = 3)$ group
- Anti-quarks in the anti-fundamental representation
- Gluons in the adjoint ($N_c^2 1$ generators)

Special type of shower: the dipole shower

- Take the $N_c \rightarrow \infty$ limit
- (Anti-)quarks carry (anti-)colour
- Gluons carry one colour and one anti-colour charge
- Assign a colour connection between all colour charges

QCD

• Quarks are in the fundamental representation (N_C generators)

Illustrated with a dipole shower for final-state emissions

Start with some partonic state This spans an initial 'colour dipole'

Illustrated with a dipole shower for final-state emissions

Start with some partonic state This spans an initial 'colour dipole'

Throw a random number to determine the scale v_1 until which 'nothing' happens'

Illustrated with a dipole shower for final-state emissions

Start with some partonic state This spans an initial 'colour dipole'

Throw a random number to determine the scale v_1 until which 'nothing happens'

The state splits... The new gluon is part of two (independent) dipoles

Illustrated with a dipole shower for final-state emissions

Start with some partonic state This spans an initial 'colour dipole'

Throw a random number to determine the scale v_1 until which 'nothing' happens'

The state splits... The new gluon is part of two (independent) dipoles

Process continues until it reaches a non-perturbative cut-off scale

End result: set of particles and their four momenta, from which any (well-defined) observable may be reconstructed

T is a colour-generator

a is a spin index

- Colour dependence is factorised
- Spin dependence is not

T is a colour-generator

T is a colour-generator

- Colour dependence is factorised
- Spin dependence is not

PS algorithms - matter of making choices

DGLAP Pythia default Herwig default

Kinematic map

How to go from *n* to n + 1 partonic state? global / local momentum conservation

> **Evolution variable** *v* Which emissions come first? k_t ordered, angular ordered, virtuality ordered...

> > Melissa van Beekveld

Dipole/Antenna V.S. Pythia dipole Herwig dipole Sherpa Dire Vincia

Attribution of recoil

How to select an 'emitter'? dipole CM frame, event CM frame

Parton showers: a crucial ingredient

Pythia 8

An introduction to PYTHIA 8.2

Torbjörn Sjöstrand (Lund U., Dept. Theor. Phys.), Stefan Ask (Cambridge U.), Jesper R. Christiansen (Lund U., Dept. Theor. Phys.), Richard Corke (Lund U., Dept. Theor. Phys.), Nishita Desai (U. Heidelberg, ITP) et al. (Oct 11, 2014)

Published in: Comput.Phys.Commun. 191 (2015) 159-177 • e-Print: 1410.3012 [hep-ph]

links 🖉 DOI 🖃 cite) pd1

PYTHIA 6.4 Physics and Manua → 12,740 citations

A comprehensive guide to the physics and usage of PYTHIA 8.3

#1

 \rightarrow 5,350 citations

لم (L) pdf

 \rightarrow 205 citations

Herwig++ Physics and Manual

M. Bahr (Karlsruhe U., ITP), S. Giesek Grellscheid (Durham U., IPPP), K. Har Published in: Eur. Phys. J.C 58 (2008) 639-707 • e-Print: 0803.0883 [hep-ph]

∂ DOI

Do an amazing job at describing the phenomenology at colliders (and sometimes even beyond colliders)

Melissa van Beekveld

Herwig 7

al
ke (Karlsruhe U., ITP), <u>M.A. Gigg</u> (Durham U., IPPP),
milton (Louvain U.) et al. (Mar, 2008)
milton (Louvain U.) et al. (Mar, 2008)

- cite

 \rightarrow 2,885 citations

D.

Event generation with SHERPA 1.1 #1

T. Gleisberg (SLAC), Stefan. Hoeche (Zurich U.), F. Krauss (Durham U., IPPP), M.
Schonherr (Dresden, Tech. U.), S. Schumann (Edinburgh U.) et al. (Nov, 2008)
Published in: JHEP 02 (2009) 007 • e-Print: 0811.4622 [hep-ph]

🖉 links 🖻 pdf ∂ DOI 🖃 cite \rightarrow 3,658 citations

Event Generation with Sherpa 2.2 \rightarrow 721 citations

But differences matter...

A precise jet-calibration is important for many SM and BSM searches

Corrects directions and energies of measured jets to the objects produced by the MC

Method is robust to effects from pile-up and underlying event...

Leading uncertainty originates from different parton-shower modeling

But differences matter...

VBF production of h + 2j

Colour coherence strongly suppresses radiation in central rapidity region

[2003.12435, 2105.11399, 2106.10987]

Pythia's default (global) shower unphysically fills this central region!

Matching for VBF (Powheg-box + PS)

Multiplicative matching [0409146, 0911.5299, 1002.2581]

Important message: Matching does not magically fix your shower

Melissa van Beekveld

MC@NLO + Pythia/Herwig in [2003.12435]

Progress in improving the PS accuracy

- Assessing the logarithmic accuracy of a shower Focus of this talk Herwig [1904.11866, 2107.04051], Deductor [2011.04777], Forshaw, Holguin, Plätzer [2003.06400]
- Triple collinear / double soft splittings Dulat, Höche, Krauss, Gellersen, Prestel [1705.00982, 1705.00742, 1805.03757, 2110.05964] Li & Skands [1611.00013], Löschner, Plätzer, Simpson Dore [2112.14454], PanScales [2307.11142]

Matching to fixed-order

NLO; i.e. Frixione & Webber [0204244], Nason [0409146], ... NNLO; i.e. UNNLOPS [1407.3773], MiNNLOps [1908.06987], Vincia [2108.07133], ... NNNLO; Prestel [2106.03206], Bertone, Prestel [2202.01082]

- Colour (and spin) correlations Forshaw, Holguin, Plätzer, Sjödahl [1201.0260, 1808.00332, 1905.08686, 2007.09648, 2011.15087] PanScales [2011.10054, 2103.16526, 2111.01161], ...
- Electroweak corrections Vincia [2002.09248, 2108.10786], Pythia [1401.5238], Herwig [2108.10817], ...

PanScales [1805.09327, 2002.11114, 2207.09467, 2305.08645], Alaric [2208.06057, 2307.00728], ...

Deductor [0706.0017, 1401.6364, 1501.00778, 1902.02105], Herwig [1807.01955], Plätzer & Ruffa [2012.15215]

Disclaimer: list is not exhaustive

Addressing the accuracy of a parton shower

For a *given* observable, one may address the question of accuracy systematically At fixed order

$$\sigma = \sum_{n} c_n \alpha_s^n = c_0 + c_1 \alpha_s + \dots$$

At all orders using analytic resummation $\Sigma^{\text{NLL}}(\lambda \equiv \alpha_s L) = \exp(\frac{1}{\alpha_s}g_1(\lambda) + g_2(\lambda) + \dots) \qquad \Sigma^{\text{NDL}}(\xi \equiv \alpha_s L^2) = h_1(\xi) + \sqrt{\alpha_s}h_2(\xi) + \dots$ $\overbrace{\mathcal{O}(1/\alpha_s)}^{\mathcal{O}(1)} \qquad \overbrace{\mathcal{O}(1)}^{\mathcal{O}(1)} \text{ in resummation regime where } \alpha_s L = \mathcal{O}(1)$

Addressing the accuracy of a parton shower

For a *given* observable, one may address the question of accuracy systematically At fixed order

$$\sigma = \sum_{n} c_n \alpha_s^n = c_0 + c_1 \alpha_s + \dots$$

At all orders using analytic resummation

$$\Sigma^{\text{NLL}}(\lambda \equiv \alpha_s L) = \exp(\frac{1}{\alpha_s}g_1(\lambda) + g_2(\lambda)$$

$$\overbrace{\mathcal{O}(1/\alpha_s)}^{\mathcal{O}(1)} = \overbrace{\mathcal{O}(1)}^{\mathcal{O}(1)}$$

Conversely, showers produce a set of particles with specified four momenta, from which any well-defined observable can be constructed

How to design showers that are NLL/NDL accurate for all observables?

+ ...) $\Sigma^{\text{NDL}}(\xi \equiv \alpha_s L^2) = h_1(\xi) + \sqrt{\alpha_s} h_2(\xi) + ...$

in resummation regime where $\alpha_{s}L = \mathcal{O}(1)$

The PanScales family

Gavin Salam Oxford

Gregory Soyez Keith Hamilton UCL Saclay

Mrinal Dasgupta Manchester

Silvia Ferrario Ravasio Alba Soto Ontoso **Alexander Karlberg** CERN CERN CERN

Jack Helliwell Oxford

Ludo Scyboz Monash

Melissa van Beekveld Nikhef

Pier Monni CERN

Basem El-Menoufi

Monash

+ past members

Frederic Dreyer Emma Slade Rok Medves Rob Verheyen Scarlett Woolnough

PanScales NLL/NDL correctness requirements

Resummation

Require single-logarithmic accuracy for suitably defined observables

- global event shapes ($\alpha_s^n L^n$) Probe the structure of double-log Sudakov resummation in the shower
- parton distribution / fragmentation functions ($\alpha_s^n L^n$) Probe the hard-collinear region
- non-global observables ($\alpha_s^n L^n$) Probe the soft wide-angle region
- particle/jet multiplicity ($\alpha_s^n L^{2n-1}$) Probe nested emissions in the soft and collinear regions

Test the basic underlying concept

Require correctness of effective matrix elements generated by the shower for wellseparated emissions (only thing one can do if a resummation cannot be formulated)

Phase space for final-state emissions

Described in terms of **shower variables**:

- The transverse momentum $k_t = E\theta$, which can be linked to the **evolution** variable $v \simeq k_t e^{-\beta |\eta|}$
- $\eta = -\ln \tan \theta/2$ the **pseudorapidity**
- ϕ the **azimuthal angle** (trivial for spinaveraged splitting functions)

Phase space for final-state emissions

Described in terms of **shower variables**:

- The transverse momentum $k_t = E\theta$, which can be linked to the **evolution** variable $v \simeq k_t e^{-\beta |\eta|}$
- $\eta = -\ln \tan \theta/2$ the **pseudorapidity**
- ϕ the **azimuthal angle** (trivial for spinaveraged splitting functions)

Emissions illustrated in Lund plane

Colour dipole (e.g. a $q\bar{q}$ pair) emitting a parton with $\eta > 0$

Emissions illustrated in Lund plane

Colour dipole (e.g. a $q\bar{q}$ pair) emitting a parton with $\eta < 0$

Emissions illustrated in Lund plane $\eta = 0$

Softer emissions move down in the Lund plane (their $|k_t|$ drops)

Emissions illustrated in Lund plane $\eta = 0$

Softer emissions move down in the Lund plane (their $|k_t|$ drops)

Emissions illustrated in Lund plane

Collinear emissions move out of the Lund plane (their $|\eta|$ increases)

Emissions illustrated in Lund plane $\eta = 0$

Collinear emissions move out of the Lund plane (their $|\eta|$ increases)

Emissions illustrated in Lund plane $\eta = 0$

Collinear emissions move out of the Lund plane (their $|\eta|$ increases)

Testing the underlying principle

- QCD amplitudes factorise in soft and collinear limits
- Shower has the factorised $1 \rightarrow 2$ eikonal/splitting functions implemented
- Shower must reproduce the factorised amplitude when emissions are 'sufficiently' independent

Any particle emitted after particle 1 may not influence the kinematics of particle 1!

Testing the underlying principle

- QCD amplitudes factorise in soft and collinear limits
- Shower has the factorised $1 \rightarrow 2$ eikonal/splitting functions implemented
- Shower must reproduce the factorised amplitude when emissions are 'sufficiently' independent

Any particle emitted after particle 1 may not influence the kinematics of particle 1!

Testing the underlying principle

- QCD amplitudes factorise in soft and collinear limits
- Shower has the factorised $1 \rightarrow 2$ eikonal/splitting functions implemented
- Shower must reproduce the factorised amplitude when emissions are 'sufficiently' independent

Any particle emitted after particle 1 may not influence the kinematics of particle 1!

Testing the underlying principle

- QCD amplitudes factorise in soft and collinear limits
- Shower has the eikonal/splitting implemented

Shower must rep

To get a single-logarithmic accurate shower, any pair of emissions that are close in either η or k_t must be correctly generated by the shower, and not be modified by subsequent emissions!

amplitude when 'sufficiently' independent

 $\ln k_t/Q$

Require correctness of shower or this configuration

Testing the underlying principle

- QCD amplitudes factorise in soft and collinear limits
- Shower has the factorised $1 \rightarrow 2$ eikonal/splitting functions implemented
- Shower must reproduce the factorised amplitude when emissions are 'sufficiently' independent

η

Testing the underlying principle

- QCD amplitudes factorise in soft and collinear limits
- Shower has the eikonal/splitting function(apart from having the correct splitting functions). implemented
- Shower must reproduce the fac 1. Evolution variable amplitude when emissions are 'sufficiently' independent

What determines the shower accuracy?

 $\ln k_t/Q$

Here a single-log shower may fail to reproduce exact amplitude

2. Kinematic map 3. Choosing the emitter

A parton shower orders emissions

The evolution variable v tells us which emissions come first, and which later in the showering process

We use the definition $v \simeq k_t e^{-\beta |\eta|}$

1. Evolution variable 2. Kinematic map Choosing the emitter 3.

Choice for most dipole parton showers

A parton shower orders emissions

The evolution variable v tells us which emissions come first, and which later in the showering process

We use the definition $v \simeq k_t e^{-\beta |\eta|}$

1. Evolution variable 2. Kinematic map Choosing the emitter

Angular-ordering (e.g. as implemented in Herwig) will not be considered here

Evolution variable 2. Kinematic map Choosing the emitter

Local kinematic map

- $p_i = a_i \tilde{p}_i + b_i \tilde{p}_j + fk_{\perp}$
- $p_i = a_i \tilde{p}_i + b_j \tilde{p}_j + (1 f)k_{\perp}$

$$p_k = a_k \tilde{p}_i + b_k \tilde{p}_j + k_\perp$$

Mapping coefficients depend on

- Evolution variable $\ln v$
- Rapidity η

Dipole: step function for fAntenna: smooth transition for f

Global kinematic map $p_i = a_i \tilde{p}_i$ $p_j = b_j \tilde{p}_j$ $p_k = a_k \tilde{p}_i + b_k \tilde{p}_j + k_\perp$

Boost (part of) event after each emission to restore momentum conservation

Choice: global in some/all +/- and \perp components

1. Evolution variable Kinematic map 3. Choosing the emitter

Standard dipole showers distinguish the emitter from the spectator at $\eta = 0$ in the CM dipole frame

Boosting back to the event frame...

1. Evolution variable Kinematic map 3. Choosing the emitter

Leads to an incorrect (and quite unphysical) recoil picture!

Physical attribution of recoil

 $\bar{q}(\tilde{p}_j)$

Recoil attribution for transverse-momentum ordered local shower (choosing emitter in dipole frame)

Wrong recoil pattern!

Evolution variable Kinematic map 3. Choosing the emitter

Recoil attribution for transverse-momentum ordered local shower (choosing emitter in event frame) $\ln k_t/Q$

1. Evolution variable Kinematic map 3. Choosing the emitter

Can be fixed using a different ordering variable, such that large-angle emissions come prior to small-angle ones (with same k_t), or a global map

 \bar{q} side

Less wrong, but still not correct recoil pattern!

81 recoils

9'recoils

PanScales NLL correctness requirements

1. Test of the basic underlying physics principle Require correctness of effective matrix elements generated by the shower for well-separated emissions

2. Resummation Require single-logarithmic (NLL/NDL) accuracy for suitably defined observables

Knobs to turn that affect the logarithmic accuracy

- 1. Evolution variable
- 2. Kinematic map
- 3. Attribution of recoil

How does a standard dipole shower (i.e. Sherpa or Pythia) behave?

A standard dipole shower: **dipole-***k*_{*t*}

- 1. Evolution variable: transverse momentum (k_t)
- 2. Kinematic map:
 - a) Local Dates back to Gustafson, Petterson [Nucl. Phys. B 306 (1988)], Catani, Seymour [hep-ph/9605323], many variations available

For every emission the momentum is locally conserved This means that the e.g. the Z-boson p_t almost never gets a kick! → not in line with the NLL prediction Plätzer, Gieseke [0909.5593], Nagy, Soper [0912.4534]

b) Global Plätzer, Gieseke [0909.5593], Höche, Prestel [1506.05057] [Pythia8 (global ISR) & Deductor have different solutions] The Z-boson absorbs the k_t imbalance induced by the global map through a boost Claimed to fix the $Z-p_t$ distribution

3. Attribution of recoil: dipole CM frame

How does a second emission affect the **first** emission's momentum?

Z,h

 $\tilde{k}_{t_1} \to k_{t_1}$

 $k_{t_2}, \eta_2 \ll \eta_2$

 $k_{t_2}, \eta_2 \gg \eta_1$

2

How does a second emission affect the **first** emission's momentum?

Melissa van Beekveld

How does a second emission affect the **first** emission's momentum?

Melissa van Beekveld

How does a **second** emission affect the **first** emission's momentum?

Direct consequence of CM dipole separation

Wrong in rapidity region $\frac{1}{2}\left(\eta_1 + \ln \frac{k_{t_1}}{Q}\right) < \eta_2 < \frac{1}{2}\left(\eta_1 - \ln \frac{k_{t_1}}{Q}\right)$

Melissa van Beekveld

 $g(\tilde{p}_i)$

How does a **second** emission affect the **first** emission's momentum?

Direct consequence of CM dipole separation

Wrong in rapidity region $\bar{q}(\tilde{p}_j)$ $\frac{1}{2}\left(\eta_1 + \ln \frac{k_{t_1}}{Q}\right) < \eta_2 < \frac{1}{2}\left(\eta_1 - \ln \frac{k_{t_1}}{Q}\right)$

Melissa van Beekveld

 $g(\tilde{p}_i)$

What is the all-order consequence?

Consider e.g. Cambridge y_{23}

Observable with standard resummation at NLL of the form

 $\Sigma_{\text{NLL}}(\lambda, \alpha_s) = \exp\left[-Lg_1(\lambda) + g_2(\lambda)\right]$

[1805.09327]

What is the all-order consequence?

Consider e.g. Cambridge y_{23}

Observable with standard resummation at NLL of the form

$$\Sigma_{\text{NLL}}(\lambda, \alpha_s) = \exp\left[-Lg_1(\lambda) + g_2(\lambda)\right]$$

with $\lambda = \alpha_s \ln \sqrt{y_{23}}$

Should tend to 1 if the shower is NLL

[1805.09327]

What is the all-order consequence?

Consider e.g. Cambridge y_{23}

Observable with standard resummation at NLL of the form

$$\Sigma_{\text{NLL}}(\lambda, \alpha_s) = \exp\left[-Lg_1(\lambda) + g_2(\lambda)\right]$$

with $\lambda = \alpha_s \ln \sqrt{y_{23}}$

Should tend to 1 if the shower is NLL

[1805.09327]

Transverse momentum of the Z boson

0.0

Melissa van Beekveld

NLL expectation

Both fail the NLL criterion for the transverse momentum of the Z boson!

Introducing NLL-accurate showers

PanGlobal

- 1. Evolution variable $v \simeq k_t e^{-\beta_{\rm PS}|\eta|}$ with $0 \le \beta_{\rm PS} < 1$ $(\beta_{\rm PS} = 0 \text{ is standard } k_t \text{-ordering})$
- 2. Kinematic map
 - Global ⊥

Local +/-

Transverse-momentum imbalance is absorbed by the hard system (Z/h)

3. Attribution of recoil hard-system CM frame

PanLocal

1. Evolution variable $v \simeq k_t e^{-\beta_{\rm PS}|\eta|}$ with $0 < \beta_{\rm PS} < 1$

2. Kinematic map Local \perp Local +/-Initial-state particles that gain a k_t component are realigned with the beam axis with a boost

3. Attribution of recoil hard-system CM frame

Introducing NLL showers: PanGlobal and PanLocal

Transverse momentum of the Z boson

Melissa van Beekveld

In line with NLL prediction

The Sudakov suppression is compensated by azimuthal cancellations at small p_t Leads to a power-law fall-off 3500 PanGlobal($\beta_{PS} = 0$) 3000 Dipole- k_t (global) Dipole- k_t (local) 2500 2000

But there is more to test!

Multiplicity

Non-global observables

Ordering

PanScales showersPanLocal (Dipole and antenna)	$0 < \beta < 1$
PanGlobal [2002.11114, 2207.09467, 2305.08645]	$0 \le \beta < 1$
Alaric	$\beta = 0$
[2208.06057, 2307.00728]	
Deductor k_t	$\beta = 0$
Deductor Λ [2011.04777]	$\beta = 1$
Manchester-Vienna [2003.06400]	$\beta = 0$

Showers also differ on the implementation of the splitting functions and how the global imbalance is redistributed

Results up to now shown in asymptotic limit - what happens at physical scales?

Renormalisation scale uncertainty implemented through

$$\alpha_{s}(x_{r}\mu_{r,0})\left(1 + \frac{K\alpha_{s}(x_{r}\mu_{r,0})}{2\pi} + 2\alpha_{s}(x_{r}\mu_{r,0})b_{0}(1-z)\ln x_{r}\right)$$

with $\mu_{r,0} = k_{t,\text{approx}}, x_{r} \in \left[\frac{1}{2}, 1, 2\right]$

Results up to now shown in asymptotic limit - what happens at physical scales?

Renormalisation scale uncertainty implemented through

+ $\frac{K\alpha_s(x_r\mu_{r,0})}{2\pi}$ $\alpha_s(x_r\mu_{r,0})$

Usual shower emission strength

$$+ 2\alpha_s(x_r\mu_{r,0})b_0(1-z)\ln x_r$$

Results up to now shown in asymptotic limit - what happens at physical scales?

Renormalisation scale uncertainty implemented through

$$\alpha_s(x_r\mu_{r,0})\left(1+\frac{K\alpha_s(x_r\mu_{r,0})}{2\pi}\right)$$

 $2\alpha_s(x_r\mu_{r,0})b_0(1-z)\ln x_r$

Include if NLL shower Factor (1 - z) ensures this is only active for soft emissions

Results up to now shown in asymptotic limit - what happens at physical scales?

Renormalisation scale uncertainty implemented through

$$\alpha_s(x_r \mu_{r,0}) \left(1 + \frac{K \alpha_s(x_r \mu_{r,0})}{2\pi} + 2\alpha_s(x_r \mu_{r,0}) b_0(1-z) \ln x_r \right)$$

Factorisation scale uncertainty implemented through

$$\mu_F = x_f \mu_{F,0} = x_f Q \left(\frac{v}{Q}\right)^{1/(1+\beta)} \quad \text{Take } x_f \in \left[\frac{1}{2}, 1, 2\right]$$

73

- Scale uncertainty LL showers > **NLL** showers
- Differences between the NLL showers - consequence of different treatment of beyond-NLL terms
- Dipole-kt(local) shows different scaling behaviour in low-pt region
- Dipole-kt(global) similar to PanGlobal

20.0

Differences are relatively small except at very small p_{tZ} (related to the absence of azimuthal cancelations)

Melissa van Beekveld

[2207.09467]

[2207.09467]

Towards LHC phenomenology - VBF

- Hard process generated with Pythia at LO accuracy (no beam remnants, hadronisation or multi-parton interaction)
- NNPDF 4.0 LO PDF set
- Shower starting scale is set separately for the two DIS chains
- VBF cuts: at least two jets with $p_{T,j} > 25 \text{ GeV}, |\eta_j| < 4.5,$ $\Delta \eta_{j_1 j_2} > 4.5, \, \eta_{j_1} \eta_{j_2} < 0, \, m_{j_1 j_2} > 600 \, {\rm GeV}$

[2305.08645]

Towards LHC phenomenology - VBF

- Hard process generated with Pythia at LO accuracy (no beam remnants, hadronisation or multi-parton interaction)
- NNPDF 4.0 LO PDF set
- Shower starting scale is set separately for the two DIS chains
- VBF cuts: at least two jets with $p_{T,j} > 25 \text{ GeV}, |\eta_j| < 4.5,$ $\Delta \eta_{j_1 j_2} > 4.5, \eta_{j_1} \eta_{j_2} < 0, m_{j_1 j_2} > 600 \text{ GeV}$

Towards LHC phenomenology - VBF

- Hard process generated with Pythia at LO accuracy (no beam remnants, hadronisation or multi-parton interaction)
- NNPDF 4.0 LO PDF set
- Shower starting scale is set separately for the two DIS chains
- VBF cuts: at least two jets with $p_{T,j} > 25 \text{ GeV}, |\eta_j| < 4.5,$ $\Delta \eta_{j_1 j_2} > 4.5, \eta_{j_1} \eta_{j_2} < 0, m_{j_1 j_2} > 600 \text{ GeV}$

[2305.08645]

Towards LEP phenomenology Thrust $\alpha_{\rm s} = 0.118, A_3 = 0$ $\alpha_s = 0.118, A_3 = 3.5$ 10^{1} + ALEPH data 10⁰ 1/*ada/dT* 10__1 Matching to NLO 10^{-2} 10^{-3} PanLocal($\beta = 1/2$) with massive c and b hadronisation through Pythia(8.306), Vincia tune 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.5 1.4 0.7 0.6 0.5 ^{LL} 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

79

PanScales [preliminary]

• PanLocal($\beta = 0.5$) dipole shower

• Heavy quarks ($m_c = 1.5 \text{ GeV}, m_b = 4.8 \text{ GeV}$)

 Renormalisation-scale uncertainties included $\alpha_s^{(\text{CMW})} = \alpha_s(x_r \mu_{r,0}) \left(1 + \frac{K_{\text{CMW}} \alpha_s(x_r \mu_{r,0})}{2\pi} + 2\alpha_s(x_r \mu_{r,0}) b_0(1-z) \ln x_r \right)$ • Enhanced coupling - $\alpha_s = \alpha_s^{(CMW)} + A_3 \alpha_s^3$

Hadronisation from Pythia8 with the Vincia tune

Hadronisation region (tuning of the shower is needed)

Towards LEP phenomenology

PanScales [preliminary]

• $PanLocal(\beta = 0.5)$ dipole shower

• Heavy quarks ($m_c = 1.5 \text{ GeV}, m_b = 4.8 \text{ GeV}$)

Matching to NLO

• Renormalisation-scale uncertainties included $\alpha_{s}^{(CMW)} = \alpha_{s}(x_{r}\mu_{r,0}) \left(1 + \frac{K_{CMW}\alpha_{s}(x_{r}\mu_{r,0})}{2\pi} + 2\alpha_{s}(x_{r}\mu_{r,0})b_{0}(1-z)\ln x_{r} \right)$ • Enhanced coupling - $\alpha_{s} = \alpha_{s}^{(CMW)} + A_{3}\alpha_{s}^{3}$

Hadronisation from Pythia8 with the Vincia tune

Poor description in the 4-jet region - need for 2-jet at NNLO?

Conclusions

- experiment
- collisions are now available
 - colour structure
 - Public code is coming soon! (timescale: ~2 months)
- Actively working towards NNLL showers
 - Double-soft emissions are under control [2307.11142]
 - Working towards a triple-collinear implementation [2307.15734]
 - We need to have reference calculations to check our shower e.g.
 - Next-to-leading non-global logarithms [2104.06416]
 - NNDL multiplicity [2205.0286]
 - NNLL groomed jet observables [2007.10355, 2211.03820]
- Interested in exploring the question of NLP corrections... 81

• Parton showers will continue to play an indispensable role in any (future) particle physics

• PanScales NLL showers for massless partons in e^+e^- (matched to NLO), pp and DIS

• Next steps: NLO matching, including massive partons, processes with a complicated

Melissa van Beekveld

Back up

Mapping between λ and physical quantities

$Q \; [\text{GeV}]$	$lpha_s(Q)$	$p_{t,\min} [\text{GeV}]$	$\xi = \alpha_s L^2$	$\lambda = \alpha_s L$	au
91.2	0.1181	1.0	2.4	-0.53	0.27
91.2	0.1181	3.0	1.4	-0.40	0.18
91.2	0.1181	5.0	1.0	-0.34	0.14
1000	0.0886	1.0	4.2	-0.61	0.36
1000	0.0886	3.0	3.0	-0.51	0.26
1000	0.0886	5.0	2.5	-0.47	0.22
4000	0.0777	1.0	5.3	-0.64	0.40
4000	0.0777	3.0	4.0	-0.56	0.30
4000	0.0777	5.0	3.5	-0.52	0.26
20000	0.0680	1.0	6.7	-0.67	0.45
20000	0.0680	3.0	5.3	-0.60	0.34
20000	0.0680	5.0	4.7	-0.56	0.30

Global event shapes for $y_7 \neq 0$

Parton distribution functions

DGLAP expectation

$$\frac{1}{\sigma}\frac{\mathrm{d}\sigma_i}{\mathrm{d}x} = \frac{1}{f_{\hat{i}}(\hat{x}, m_Z^2)} \int_{\hat{x}}^1 \frac{\mathrm{d}z}{z} D_{\hat{i}i}(z, \alpha_s L) f_i\left(\frac{\hat{x}}{z}, p_{t,\mathrm{cut}}^2\right) \delta\left(\frac{\hat{x}}{z}, \frac{\hat{x}}{z}, \frac$$

Non-global observable: rapidity gap

Particle multiplicity

- Recoil is taken from the first gluon even when emissions are separated in rapidity
- Separation of dipole in event CM frame is not enough to cure dipole-showers with local maps from locality issue, the transverse momentum ordering is problematic here
- Only when emissions are ordered in angle $(\beta_{\rm PS} > 0)$ we solve this
- Then commensurate k_t emissions are ordered in angle, so they take their recoil from the hard system (after boost)

89

Melissa van Beekveld

- For IF dipoles, momentum of first emission is rescaled by $b_j = 1 \beta_k$ in map
- For $\beta=1$ this equates to $1-\frac{\tilde{s}_i}{\tilde{s}_{ij}}\frac{v}{Q}$ and becomes independent of $\bar{\eta}$
- Consider change in first emitted parton:

$$p_{k,1} = \tilde{p}_j \to b_j p_{k,1} = \left(1 - \frac{\tilde{s}_i}{\tilde{s}_{ij}} \frac{v_2}{Q}\right) p_{k,1}$$

• With $\frac{s_i}{\tilde{s}_{ij}} = \frac{2p_i \cdot Q}{2\tilde{p}_i \cdot \tilde{p}_j} = \frac{1}{b_{k,1}}$ and $b_{k,1} = \beta_{k,1} = \frac{v_1}{Q}$

$$\frac{k_{\perp,1}}{k_{\perp,1 \text{ after } 2}} = \left(1 - \frac{v_2}{v_1}\right)$$

Colour tests

Test of the differential matrix element

Here primary $\bar{q}q$ Lund plane and the new gLund leaf

LC = leading colour (standard) FC = full colour

CFFE = standard colour treatment

Segment and NODS two ways to improve the colour handling in the PanScales showers

Colour tests

$$I_{\rm FC}^{Zg_1} \equiv \int \frac{\mathrm{d}\Omega}{2\pi} \frac{|\mathcal{M}_{q\bar{q}g_1g_2}}{|\mathcal{M}_{q\bar{q}g_1}}$$

Spin tests

92

 $\frac{d\sigma}{d\Delta\psi_{ij}} \propto a_0 \left(1 + \frac{a_2}{a_0}\cos(2\Delta\psi_{ij})\right)$

Two collinear emissions

 $\frac{d\sigma}{d\Delta\psi_{ij}} \propto a_0 \left(1 + \frac{a_2}{a_0}\cos(2\Delta\psi_{ij})\right)$

PanGlobal, 10 1 C $\Delta \psi_{12} =$

Spin tests

94

$$\frac{d\sigma}{d\Delta\psi_{13}} \propto a_0 \left(1 + \frac{a_2}{a_0}\cos(2\Delta\psi_{13}) + \frac{b_2}{a_0}\sin(2\Delta\psi_{13})\right) + \frac{b_2}{a_0}\sin(2\Delta\psi_{13}) + \frac{b_2}{a_0}\sin(2$$

Three collinear emissions

Super-leading logarithms

- Consider $M_{R,0}$, max p_{\perp} of emissions in the right hemisphere (sensitive to super-leading logs at $\mathcal{O}(\alpha_s^3)$)
- Take toy-model approach with only soft primary emissions and fixed coupling
- Take difference between CEASAR result and toy shower $\delta F_n(L)$, n = order in α_s , where $F = \sum \alpha_s^n F_n$ has terms of $\alpha_{s}^{n}L^{m}$ with $m \leq n$
- Clearly a discrepancy at fixed-order for standard dipole showers
- Vanishes at all orders because it is numerically comparable to the NNLL terms -> orange points

Super-leading logarithms

96

 Discrepancy not there for PanScales family of showers

Subleading colour corrections - jet veto in h + 2j

Non-global observable: sensitive to wide-angle soft gluon emissions in restricted regions of phase space

[2011.04154]

Soft gluons are sensitive to **colour flow** of underlying process i.e. $qq \rightarrow qqH$ has an octet and a singlet channel

Subleading colour corrections - jet veto in h + 2j

Including higher-logarithmic effects

Including higher-logarithmic effects

Triple-collinear splitting functions

Catani, Grazzini [9810389, 9908523]

 $|M_{1,2,3,\ldots,k,\ldots}(p_1,p_2,p_3,\ldots)|^2 \xrightarrow{123-\text{coll}}$

$$\left(\frac{8\pi\mu^{2\varepsilon}\alpha_s}{s_{123}}\right)^2 \mathcal{T}_{123,\dots}^{ss'}(p_{123},\dots) P_{123}^{ss'}(p_1,p_2,p_3)$$

These corrections need to be included to get to NNLL/NNDL accuracy

- Discussion so far is based on the factorisation in a single unresolved limit
 - What about double-unresolved configurations?

Double-soft emissions

Campbell, Glover [9710255] Catani, Grazzini [9908523]

$$|M_{1,2,3,...,n}(p_1, p_2, p_3, ..., p_n)|^2 \xrightarrow{12-\text{soft}} (4\pi\mu^{2\varepsilon}\alpha_s)^2 \sum_{i,j=3}^n \mathcal{I}_{ij}(p_1, p_2) |M_{3,...,n}^{(i,j)}(p_3, ..., p_n)|^2 \xrightarrow{12-\text{soft}} (4\pi\mu^{2\varepsilon}\alpha_s)^2 \sum_{i,j=3}^n \mathcal{I}_{ij}(p_1, p_2) |M_{3,...,n}^{(i,j)}(p_1, ..., p_n)|^2 \xrightarrow{12-\text{soft}} (4\pi\mu^{2\varepsilon}\alpha_s)^2 \sum_{i,j=3}^n \mathcal{I}_{ij}(p_1, p_2) |M_{3,...,n}^{(i,j$$

Analytic ingredients - new hard collinear terms

One important and new ingredient for a fully differential shower is $B_2(z)$

Consider the Sudakov for transverse-momentum resummation

$$S(Q,b) = \exp\left(-\int_{\bar{b}^2/b^2}^{Q^2} \frac{\mathrm{d}q^2}{q^2} \left[A(\alpha_s(q^2))\ln\frac{Q^2}{q^2} + B(\alpha_s(q^2))\right]\right)$$

 $A(\alpha_s) = \sum_{s}$ n =

Parisi, Petronzio [NPB 154 (1979) 427-440]

Both obey a perturbative expansion in α_{c}

$$B(\alpha_s) = \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{2\pi}\right)^n B_n$$

$$B(\alpha_s) = \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{2\pi}\right)^n B_n$$

 A_1, B_1, A_2 are observable independent (they only depend on the emitting particle)

Analytic ingredients - new hard collinear terms

One important and new ingredient for a fully differential shower is $B_2(z)$

Consider the Sudakov for transverse-momentum resummation Parisi, Petronzio [NPB 154 (1979) 427-440]

$$S(Q,b) = \exp\left(-\int_{\bar{b}^2/b^2}^{Q^2} \frac{\mathrm{d}q^2}{q^2} \left[A(\alpha_s(q^2))\ln\frac{Q^2}{q^2} + B(\alpha_s(q^2))\right]\right)$$

 $A(\alpha_s) = \sum_{s}$

 $B_2^{q/g}$ needs to be included in a differential manner $\rightarrow B_2^{q/g}(z)$

Both obey a perturbative expansion in $\alpha_{\rm c}$

$$\sum_{n=1}^{\infty} \left(\frac{\alpha_s}{2\pi}\right)^n A_n \qquad \qquad B(\alpha_s) = \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{2\pi}\right)^n B_n$$

 B_2 is observable-dependent, i.e. for a quark emitter

$$B_2^q = -\gamma_q^{(2)} + C_F b_0 X_v$$

Catani, de Florian, Grazzini [0008184, 0407241]

$B_2(z)$ for quark channels

1. Integrate the triple-collinear contributions over 2 energies and 1 angular variable ($\theta, \rho, k_T, \ldots$)

2. Isolate the pure NNLL terms (subtract iterated LO splittings and $K_{\rm CMW}$ contributions)

Result:
$$B_2^q(z)$$
 different

$$\int_{0}^{1} \mathrm{d}z \left[B_{2}^{q,C_{F}C_{A}}(z) + B_{2}^{q,C_{F}^{2}}(z) + B_{2}^{q,C_{F}T_{R}n_{F}}(z) + B_{2}^{q,\mathrm{id}}(z) \right] = -\gamma_{q}^{(2)} + C_{F}b_{0}X_{v} = B_{2}$$

Observable-dependence depends on the scale of the coupling through the angular variable that is fixed

To be done: get $B_2^g(z)$, implement this in a shower, understand cross-talk with double-soft...

Dasgupta, El-Menoufi [2109.07496]

+ virtual corrections

ntial in z, θ for all channels

Implementing higher-order splitting kernels

Consider quark-pair emissions in the triple-collinear (tc) and double-soft (ds) limits

Need to remove overlapping singularities and contributions obtained by LO iteration

Complete MEs in the tc and ds limits (latter with a minus sign to remove the double counting)

Result is fully finite through introduction of integrated subtraction terms and factorization counter terms Generate emissions using the $1 \rightarrow 3$ branching kernels in a $2 \rightarrow 4$ 'tripole'

> Note that this is not an NNLL shower, i.e. the kinematic map has the issues pointed out before

Diagrams obtained iterating LO splittings

Implementing higher-order splitting kernels

- Dire with soft-subtracted triplecollinear $q \rightarrow qq\bar{q}$ splittings
- $K_{\rm CMW}$ included in the coupling (not in differential form)

• Dire with only double-soft corrections (all channels)

Dulat, Gellersen, Höche, Prestel [1705.00742, 1805.03757, 2110.05964]

