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Outline
1. Study of Color-charge-dependent Jet Quenching using Photon-tagged Jet 
      - PLB 846 (2023) 138154 

2. Searching for Diffusion Wake using Jet-Hadron Correlations in Photon-Jet events  
      - ATLAS-CONF-2023-054

https://doi.org/10.1016/j.physletb.2023.138154
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-054/
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Quark Gluon Plasma and Heavy-ion Collisions

Nature Physics 15 (2019) 1113

• Quark Gluon Plasma (QGP): extremely hot and dense phase of matter in which quarks and 
gluons are no more confined into hadrons  
➡ properties known as an almost perfect fluid 
➡ lowest specific sheer viscosity (η/s) of any known substance 
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Jet Quenching 
• Understand parton-to-medium interaction in QGP using the jet quenching phenomenon  

• Various LHC & RHIC results of nuclear modification factor (RAA) show  
significant suppression of jets in heavy ion collisions compared to that in pp collisions

PLB 790 (2019) 108
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Color-charge-dependent Jet Quenching
• Photon-tagged jet vs Inclusive jet  

• Inclusive jet production in pT < ~200 GeV is 
dominated by gluon-initiated jets 


• Jets in association with photon (pp→γ+jet+X) are 
largely produced by Compton scattering  
→ quark-initiated jets 

• Comparing photon-tagged jet and inclusive jet, one 
can examine the sensitivity to color charge in jet 
energy loss in QGP 

q-g Compton scattering

γq

g q

⟨ΔEg⟩ ∝ αs CR ̂q L2

Casimir color factor     
4/3 for quarks  
3 for gluons

ΔEgluon > ΔEquark

PLB 846 (2023) 138154
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Prompt Isolated Photons

• Photon Isolation condition significantly reduces  
decay photons and fragmentation photons in the sample 

• Discrimination between isolated direct and fragmentation 
photons is arbitrary in experiment

๏ Fragmentation photon 
• radiated from partons after the primary hard 

scattering

๏ Decay photon  
• decayed from hadrons, such as 

• major background

π0 → γγ Fragmenta)on 

Prompt photons  
= Direct + Fragmenta)on photons

Direct photons

quark-gluon 
Compton sca:ering

quark - an)-quark 
Annihila)on

๏ Direct photon  
• produced from primary vertex

• Processes : Compton scattering, Annihilation
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Event Selection & Analysis Procedure
• Photons 
➡ pT > 50 GeV 
➡ |η| < 2.37 
➡ Prompt Isolated photons (direct+fragmentation photons) 

• Jets 
➡ anti-kT R=0.4 
➡ 50 < pT < 316 GeV/c  
➡ |η| < 2.8 
➡ Δφ(γ,jet) > 7π/8 
➡ all (photon, jet) pairs are considered rather than just leading objects 

• Main analysis procedure 
➡ combinatoric background jet subtraction using event-mixing technique 
➡ subtraction of jets associated with background-photons using photon purity 
➡ 2D simultaneous unfolding for photon pT and jet pT  
➡ final observables (e.g. cross section, RAA, Sloss, etc) as a function of jet pT

Jet

γ

Δϕ > 7π/8
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Nuclear Modification Factor (RAA)

• Centrality ordering in RAA 

• For jet pT < ~80 GeV, photon pT > 50 GeV threshold effect
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γ-jets vs. inclusive jets: pT spectra in pp

• σ(γ-jet) in pp collisions (without energy loss in QGP) has a less 
steep spectrum than σ(inclusive jet) 

• This impact must be considered when comparing RAA 
between two different samples 

For the same energy loss,

flatter 

pT distribution in pp

→ higher RAA

steeper 

pT distribution in pp


→ lower RAA

pp
pp
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γ-jets vs. inclusive jets: Isospin effect
• nPDF effects (dashed lines) are similar for both 

photon-tagged jets and inclusive jets 

• The photon-tagged jet production rate decreases in 
Pb+Pb collisions because of the isospin effect 
(solid lines), while the inclusive jet production rate in 
Pb+Pb collisions is not affected by the isospin effect  

• In summary for other effects  
besides the different q/g fraction,  
➡ the pT spectrum effect increases photon-tagged 

jets RAA by ~5-10% 
➡ the isospin effect decreases photon-tagged jets RAA 

by ~10-20%  

➡ combined effect makes photon-tagged jet RAA lower

Photon-tagged jets, isospin

Inclusive jets, isospin
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Nuclear Modification Factor (RAA)

• Comparison in RAA between γ-jets and inclusive jets for the 0-10% centrality bin  

• For pT < ~200 GeV, RAA (γ-jets) > RAA (inclusive jets)  

• This indicates that quark-initiated jets lose less energy than gluon-initiated jets

Inclusive jet RAA

Photon-tagged jet RAA

gluon-initiated jet dominant

quark-initiated jet dominant
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Nuclear Modification Factor (RAA)

• For pT > ~200 GeV, RAA (γ-jets) ~ RAA (inclusive jets), why? 
➡ Isospin effect becomes larger 
➡ Quark-initiated jet fraction becomes similar btw γ-jets and inclusive jets
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Fractional Energy Loss, Sloss

• limitation of RAA: a steeper pT distribution in pp (before jet quenching) will result in lower RAA 

• but, Sloss and ΔpT are less affected by the pT spectrum in pp collisions 

• The Sloss was originally defined and further detailed by the PHENIX Collaboration:  
Nucl. Phys. A 757 (2005) 184, Phys. Rev. C 76 (2007) 034904, JHEP 09 (2001) 033

when

Sloss(ppp
T ) ≡

ΔpT

ppp
T

RAA =
YPb+Pb

Ypp

ΔpT = ppp
T − pPb+Pb

T

pp
Pb+Pb
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Fractional Energy Loss, Sloss

• For < ~200 GeV, Sloss and ΔpT values for γ-jets 
are significantly smaller than those for inclusive 
jets  
➡ significant color-charge dependence to jet 

energy loss  

• The isospin-corrected Sloss and ΔpT (dashed 
lines) even strengthen the evidence that 
quark-initiated jets lose less energy 
than gluon-initiated ones 

Photon-tagged jets

Inclusive jets
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Theory Comparison: RAA

• Inclusive jet: data is well described by all calculations  
• Photon-tagged jet: data is generally higher than many of the calculations 
• Theory predictions include color-charge dependence of the parton-QGP interaction  

• For both data and calculations, generally,  > 1 at RAA < ~ 200 GeVRγ−jet
AA /Rinclusive jet

AA
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Discussion) Jet pT dependent XJγ : Data vs. MC

• XJγ is measured in each jet pT bin  
→ he higher jet pT, the larger fragmentation photon contribution  

• This demonstrates the direct-fragmentation photon fraction in each jet pT bin in our sample 
• Potential mis-modeling of the fraction of direct-fragmentation photons in MC

50 < jet pT < 60 GeV 100 < jet pT < 120 GeV 200 < jet pT < 250 GeV

Note that these are reconstructed-level jets and photons  
for both data and MC, without any corrections  

(i.e. photon purity, efficiency, unfolding)

fragmentation photons
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Discussion) Cross section in pp: Data vs. MC 

• MC generators (Pythia,  
Sherpa, Herwig) do not describe the data well for either pT 
spectrum or the total cross section  
➡ If theory predictions use one of these MC generators,  

one needs to consider the differences between the data 
and predictions
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Medium Modification Incurred by Jets
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Mutual Interaction : Medium ⇄ Jets
• As jets are modified by medium, the medium is also affected by jets! 

• Structures formed; Mach cone, sonic boom, shock wave, wake, diffusion wake, … 

• By energy and momentum conservation, lost jet energy ➡ into medium

G.-Y. Qin et al, PRL 103, 152303 (2009)

Jet

Enhancement

Depletion
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η/s = 1/4π η/s = 3/4π η/s = 6/4π R. B. Neufeld, PRC 79 (2009) 054909 

Jet

20

Why is medium response important to understand?
• Essential to describe the jet (sub)structure precisely 

• Understanding in QGP bulk properties e.g. , sound velocityη/s

• In-medium thermalization information e.g. , ,  

• Medium response affects the extraction of jet transport coefficient 
➡ can be related to local gluon density distribution of the medium

Emed Ddiff τth

Yayun He et al, PRC 106 (2022) 044904
ATLAS, PLB 790 (2019) 108

w/ medium 
response

w/o medium 
response
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Looking for Diffusion Wake in Photon-Jet events (1)
• Jet-hadron correlation to study medium modification incurred by jets 
➡ Modification in jet direction, so-called wake effect, Mach cone, are convoluted with  

in-medium parton shower modification and medium response → hard to disentangle … 
➡ Diffusion wake in photon-jet events;  

unlike di-jet events, a jet associated a photon is NOT contaminated by wake or in-medium parton 
shower modification by another jets

CoLBT, Xin-Nian et al, PRL127, 082301 (2021)

diffusion wake,
wake,

parton shower

parton shower
wake,

diffusion wake,

diffusion wake
γ

wake,
parton shower

Di-jet

-jetγ
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Looking for Diffusion Wake in Photon-Jet events (2)
• CoLBT model predicts 
➡ Yield as a function of : overall enhancement from multi-parton interaction (MPI) at  Δϕ Δϕ ∼ π
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Looking for Diffusion Wake in Photon-Jet events (2)
• CoLBT model predicts 
➡ Yield as a function of : overall enhancement from multi-carton interaction (MPI) at   
➡ Jet-hadron  in -jet events 
➡ Unambiguous diffusion wake signal 

Δϕ Δϕ ∼ π
(Δϕ, Δη) ∼ (π,0) γ

1< <2 GeVptrack
T

0< <2 GeVptrack
T

Pb+Pb

pp

CoLBT, Xin-Nian et al, PRL 130, 052301 (2023)

pp Pb+Pb 0-10 %

Note) the “bulk only” yield is subtracted from the “bulk + photon+jet” yield
Diffusion wake
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Diffusion Wake: Dependence on Jet Energy Loss

• Smaller  means larger jet energy loss and longer path through the medium and 
hence larger medium response i.e., diffusion wake  

• However, the MPI signal has no significant dependence on the , while the diffusion wake does

xJγ = pjet
T /pγ

T

xJγ

Diffusion Wake Multi-parton interaction (MPI)CoLBT, Xin-Nian et al, PRL 130, 052301 (2023)

Large jet E loss

Small jet E loss
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Event Selection
• Photons 
➡ pT > 50 GeV 
➡ |η| < 2.37 
➡ Prompt Isolated photons (direct+fragmentation photons) 

• Jets 
➡ anti-kT R=0.4 
➡ 50 < pT < 316 GeV/c  
➡ |η| < 2.5 
➡ Δφ(γ,jet) > 3π/4 
➡ only leading photons and leading jets are considered 

• Tracks 
➡ 0.5 < pT < 2 GeV 
➡ |η| < 2.5 
➡ Δφ(jet, track) > π/2

Jet

γ
Tracks

Δϕ > 3π/4
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| (jet, track)| distributions in pp collisionsΔη
• No  dependence found within uncertainties 

• The data is in agreement with the theory expectation 

• This validates that any -dependent change in Pb+Pb 
should be from different amounts of energy loss

xJγ

xJγ

Multi-parton Interaction

CoLBT, Xin-Nian et al, PRL 130, 052301 (2023)
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Event Mixing in Pb+Pb collisions
• Bulk medium property w/o jet can be obtained from event mixing 
➡ by correlating the photon-jet pair in a signal event with tracks in different minimum-bias (MB) events 

- photon and jet kinematics are exactly the same between signal events and mixed events  
➡ matching signal and MB events in bins of  

- : 200 bins in [0,5000] GeV; much finer than a 1%-width centrality bin in central collisions 

- Ψ2: 16 bins in [-π/2,π/2] 
- z vertex: 20 bins in [-10,10] cm; bin width of 1cm

ΣEFCal
T

All tracks in a 
signal event

Uncorrelated tracks  
in MB events

γ γ
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| (jet, track)| distributions in Pb+Pb collisionsΔη

• per-(photon, jet) yield ( ) as a function of  in three different  regions  

• : jet-track pairs from the signal (photon-jet) events  

• : pairs from mixed events; jets from signal events and tracks from MB events

1
Nγ−jet

d2N jet−track

dΔηdΔϕ
= Ycorr |Δη(jet, track) | xJγ

Ycorr
Yuncorr

0.3 < xjγ < 0.6 0.6 < xjγ < 0.8 0.8 < xjγ < 1.0
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Relative Yield Ratio Ycorr/Yuncorr

• No clear diffusion wake signal is found  
within uncertainties for all three  regionsxJγ
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•  
➡ Relative yield ratio btw signal and mixed events
Ycorr /Yuncorr

(Ycorr /Yuncorr)xJγ=0.3−0.6 (Ycorr /Yuncorr)xJγ=0.6−0.8 (Ycorr /Yuncorr)xJγ=0.8−1.0

γ γ
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Double Ratio (Ycorr/Yuncorr)xJγ=0.3−0.6/(Ycorr/Yuncorr)xJγ=0.8−1.0
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• No clear  dependence found  
in the diffusion wake signal  
within uncertainties

xJγ
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Diffusion Wake Amplitude 

• Monte Carlo sampling method is used to obtain probability distribution of 
diffusion wake amplitude, considering all statistical and systematic 
uncertainties and their correlations.  

• Statistical uncertainty dominates as systematic uncertainties are highly 
correlated bin-by-bin 

• All results are consistent with no signal, i.e., =0, within approximately 1adw σ
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Diffusion Wake Double Ratio Amplitude 

• Data indicates no 
significant diffusion 
wake signal that 
increases with larger 
parton energy loss
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• Data provides limits on double ratio amplitude (| |) 
➡ 95% CL upper limit of 0.0095 does not rule out CoLBT prediction of 0.0018 
➡ Stat. uncert. dominates in probability distribution; more statistics in Run-3 would be valuable

bdwr
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Summary
• The photon-tagged jet RAA results provide the strongest confirmation to date of larger jet quenching 

for gluon-initiated jets compared with quark-initiated jets 

• Jet-hadron correlations in photon-jet events provides unambiguous signal of medium response  
➡ no significant diffusion wake signal found within current data sensitivity; need for future larger datasets 
➡ data provides limits on diffusion wake amplitude
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BACK UP
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Photon+Multijets

ATLAS-CONF-2023-008

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2023-008/
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