SiPM-on-technology option
for ZDC HCAL
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Forward HCAL uses SiPM-on-tile
technology

ZDC HCAL might benefit from
sharing info, ideas, etc.

Consider what we show today as
a starting point in a discussion.
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A possible SiPM-on-tile ZDC design
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A possible SiPM-on-tile ZDC design

e Accessible PCB boards

o Allows SiPMs to be annealed

to mitigate radiation damage

o (10"-10'? 1 MeV-equivalent
neutron/cm? per year)
e |[fusing Fe, it could be

software compensated:

o EM and hadronic
sub-showers distinguished in
software and weighted
accordingly
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Neutron flux in Insert region is similar to that of ZDC

https://wiki.bnl.gov/EPIC/index.php?title=Radiation Doses

10x275GeV e+p, top luminosity, 1 run period (~6 months)
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Mitigation strategies discussed for Insert could be used in ZDC
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https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses

Can the SiPM-on-tile approach AE/E < 50%/\/E

meet the YR requirements

for ZDC? AO < 3 mrad/\/E

- Yes, energy resolution should be within range of technology, as CALICE
quotes ~45%/sqrt(E) in test beam for Fe/Sc design, after software
compensation.(https://arxiv.org/abs/1207.4210)

- Yes, position resolution can be tuned with cell size, and can be improved with
dedicated algorithms, like HEXPLIT (described in next slides).


https://arxiv.org/abs/1207.4210

Recent submission

to the arXiv
arXiv:2308.06939
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Leveraging Staggered Tessellation for Enhanced
Spatial Resolution in High-Granularity Calorimeters
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ABsTtrACT: We advance the concept of high-granularity calorimeters with staggered tessellations,
underscoring the effectiveness of a design incorporating multifold staggering cycles based on
hexagonal cells to enhance position resolution. Moreover, we introduce HEXPLIT, a sub-cell
re-weighting algorithm tailored to harness staggered designs, resulting in additional performance
improvements. By combining our proposed staggered design with HEXPLIT, we achieve an
approximately twofold enhancement in position resolution for neutrons across a wide energy range,
as compared to unstaggered designs. These findings hold the potential to elevate particle-flow
performance across various forthcoming facilities.
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Position resolution improved

through staggering

e Simulations show that
position resolutions can
be improved two-fold by
using staggering and the
recently developed
HEXPLIT algorithm

arXiv:2308.06939
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Staggered tessellation patterns
In sampling calorimeters
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Baseline shower-position
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The HEXPLIT algorithm
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Neutron-shower performance for the ZDC-like* calorimeter
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*Simulations in this paper
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simulated neutrons
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ZDC geometry in DD4HEP

Two geometries are simulated:
Fe/Sc and another Pb/Sc.

Same digitization and hit-level cuts as
applied to HCAL Insert studies (which
are based on CALICE studies).

Larger event sample generated with
transverse dimensions of 60x60cm2.

Neutrons generated over range
theta<5.5 mrad and full azimuth

Fe 20 mm/ Sc 3.0 mm (64 layers)

375 5‘30

Pb 10 mm/ Sc 2.5 mm (110 layers)
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ZDC geometry in DD4HEP

- Geometry:

- https://github.com/sebouh137/staggered t
esselations/tree/main/dd4hep

- DD4hep plugin for hexagonal

segmentation and staggering
- https://github.com/sebouh137/DD4hep/tree/master

Link to HEXPLIT example code:

https://zenodo.org/record/8245245

Fe 20 mm/ Sc 3.0 mm (64 layers)

375 5‘30

Pb 10 mm/ Sc 2.5 mm (110 layers)
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https://github.com/sebouh137/staggered_tesselations/tree/main/dd4hep
https://github.com/sebouh137/staggered_tesselations/tree/main/dd4hep
https://github.com/sebouh137/DD4hep/tree/master
https://zenodo.org/record/8245245

Position resolutions for neutrons with a realistic ZDC model
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Edge effects in the position reconstruction

ZDC neutron simulations, HEXPLIT reconstruction (H4 layout)

Some bias for shower
loss near edge of
detector

O

Affects weighted average
position of shower

<2 mm (or 0.05 mrad)
within fiducial range

(>50 mm from edge).
Could be corrected for in
software
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ZDC neutron simulations, energy reconstruction

Energy reconstructiol
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Energy recon
(Pb version)

Smaller bias in the
reconstructed energy
than in Fe geometry
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Position resolution
(Pb version)

e Pb has a considerably better
position resolution than Fe.

*slide updated since it was presented to
show the results of a larger simulated
sample that was not yet processed by the
time this presentation was presented

ZDC neutron simulations, HEXPLIT reconstruction (H4 layout)
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Summary and Conclusions

We think SiPM-on-tile technology, and
HEXPLIT design offer cost-effective
solution that could benefit/complement
ZDC HCAL design.

We have shown that a Fe-absorber
SiPM-on-tile design can meet YR
requirements and more (for position
resolution). Very low cost.

We are also exploring a Pb-absorber
SiPM-on-tile design.

We look forward to further

discussion/collaboration with all interested

parties
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