

Developing a general eA tagging program in ePIC – beginning with Deuterium

Kong Tu, BNL* September 22, 2023

*In collaboration with members in the eA study group

Motivation

• A general question: what are the [capability/limit/acceptance] of the ePIC detector in terms of selecting eA exclusive events?

Motivation

- A general question: what are the [capability/limit/acceptance] of the ePIC detector in terms of selecting eA exclusive events?
- Specifically, what is the acceptance of coherent and incoherent eA reactions for a given [Q², x, -t, A, A/Z, coh/incoh] ?

[a multi-dimensional acceptance plot]

This will be essential for all exclusive reactions that extends from ep to eA.

Figure 1: Diagram of incoherent diffractive J/ψ productions in electron-deuteron scattering

STAR UPC data provided the first data constraints on coherent and incoherent eD scattering. [Phys. Rev. Lett. 128 (2022) 12, 122303]

STAR UPC data provided the first data constraints on coherent and incoherent eD scattering. [Phys. Rev. Lett. 128 (2022) 12, 122303]

What we learned:

- i) incoherent and coherent are well described by theory, which is based on the nuclear wavefunction with small nuclear effects.
- ii) Low-t, ~ 0.1 GeV², coherent is dominated, and incoherent takes over after that.

EIC prediction for eD photoproduction based on Saturation models by [Mäntysaari, Schenke]

Coherent: average density. Incoherent: density fluctuation.

EIC prediction for eD photoproduction based on Saturation models by [Mäntysaari, Schenke]

Coherent: average density. Incoherent: density fluctuation.

What we NEED:

- i) Separate coherent and incoherent, because they present different physics!
- ii) Low-t, ~ 0.1 GeV², coherent deuteron is difficult to be tagged, we can only achieve via **incoherent veto** method. Like the heavy nuclei case.

(coherent eA tagging, qualitatively, is harder when goes to low-t and low-x)

Veto analysis on deuteron breakups using the BeAGLE model

- BeAGLE has implemented the Light-cone wavefunction of deuteron based on the Ciofi. et al parametrization. Many publications are available [Tu et al (2020), Jentsch et al (2021), …]
- BeAGLE eD simulation 18x110 GeV, simulated through full ePIC detector. We can simulate rho, phi, and Jpsi (no Upsilon). Here we specify BeAGLE to produce phi only.
- BeAGLE events are "burned" with the crossing angle and beam effects. Far-Forward detectors are all included (B0, OMD, RP, and ZDC), to veto on their activities. The current algorithm: if any of the following requirement is met, the event is vetoed:
 - > B0, at least one hit per layer.
 - > ZDC EM, one hit is required to be vetoed
 - > OMD, a track is required to be vetoed.
 - > RP, a track is required to be vetoed
- Because of the magnet setting in current software, we need to apply the FieldScaleFactor = 220/275.

Figure 1: Diagram of incoherent diffractive J/ψ productions in electron-deuteron scattering

Some DIS control plots [Sep 11]

t-distribution with ePIC_full [Sep 11 version]

This is without the FF veto, comparing with the true MC.

- Good electron selections:
 - Leading cluster (new algorithm).
 - Energy calibration is ~ 4.5%
 - Select clusterRadius < 550 mm
 - Electron track (leading p_T , charge < 0, lassociation to K⁻)
 - 0.8 < E/p < 1.18
- DIS event selection:
 - 27 < E Pz < 40 GeV
- • phase space:
 - daughter K |pseudorapidity| < 3.0;
 - Within 0.02 GeV of ϕ mass.
- Method A on the t reco. (e.g., $-t = (\boldsymbol{p}_{T,e'} + \boldsymbol{p}_{T,VM})^2$)

t-distribution with ePIC_full [Sep 11 version]

- All cuts are the same as previous slide. This is with veto.
- Finally, the vetoing performance seems to make (more) sense now.*
- Vetoing power ranges from 300 to 15, starting from low to high t. (vetoing power = residue/before)

* we discovered a **handful of simulation issues** during this analysis.. but thanks to the FF group (e.g., A. Jentsch) and S&C, those were fixed. (this is one of the reasons why analyses at this stage are important - a feedback system for detector and software developments)

Some technical details - Every FF detector has hits.

Some technical details - Every FF detector has hits.

What's next?

A reminder of our "process"

Phase 1: Physics process identified. Generator available. Phase 2: Physics events passed thru ePIC software simulation. Phase 3: Physics benchmark made. Codes/scripts submitted.

- BeAGLE is our primary model;
- We simulated D², and Au¹⁹⁷ so far;
- I propose to simulate He³, C¹²,Ca⁴⁰, Zr⁹⁰, Xe¹³¹, Pb²⁰⁸ for studying the full A-dependence

Not yet to the benchmark.

But we do have a benchmark for eAu coherent phi production.

Phase 3 analysis – eAu diffractive Phi benchmark

https://eicweb.phy.anl.gov/EIC/benchmarks/physics_benchmarks/-/tree/master/benchmarks/diffractive_vm

↓ □ Q Search GitLab			⑦ ~ Register Sign in
P physics_benchmarks	EIC > benchmarks > physics_benchmarks	> Repository	
Project information			
🖹 Repository	add dis/jets benchmark		
Files	Dmitry Kalinkin authored 4 da		
Commits	master ~ physics_benchmarks	/ benchmarks	History Find file
Branches			
Tags	Name	Last commit	Last update
Contributor statistics			
Graph	🗅 backgrounds	fix: rm BEAMLINE_CONFIG, JUGGLER_INSTALL_PREFIX	3 weeks ago
Compare revisions Issues 17	🗅 diffractive_vm	add diffractive_vmp	1 week ago
% Merge requests 11	🗅 dis	add dis/jets benchmark	4 days ago
CI/CD	🗅 dvcs	fix: rm BEAMLINE_CONFIG, JUGGLER_INSTALL_PREFIX	3 weeks ago
 Deproyments Packages and registries 	🗅 dvmp	tcs.sh: allow gaudirun \$? == 4	7 months ago
똎 Monitor	🖹 single	tcs.sh: allow gaudirun \$? == 4	7 months ago
<u>네</u> Analytics	🗅 tcs	fix: rm BEAMLINE_CONFIG, JUGGLER_INSTALL_PREFIX	3 weeks ago
₽ Wiki	🗅 u_omega	fix: rm BEAMLINE_CONFIG, JUGGLER_INSTALL_PREFIX	3 weeks ago
X Snippets	↔ benchmarks.json	Update the CI scripts for the DIS stub to be consistent with	the more 2 years ago

From now on, every campaign we can quickly make the same plot and check for updates/issues. For example, the August campaign, this benchmark returned empty, which indicated a problem in the Calorimeter (npsim issue on the calorimeter thresholds) Thanks to S&C and especially **Dmitry Kalinkin** for making this benchmark official!

A test sample ran in July Campaign.

Summary

- In this study, we have a first look at how deuteron breakup can be vetoed using the ePIC detector.
 - This is a starting point to understand the general performance of eA exclusive program in ePIC.
- Similar studies are being done by [*Michael Pitt, Eden Mautner, et al.*] on heavy nuclei Pb²⁰⁸. We will be performing light and medium A nuclei in the future, e.g., He³, C¹², Ca⁴⁰, Zr⁹⁰, Xe¹³¹.
- This is not only limited to Vector-Meson production, but also applies to DVCS on nuclear targets, or other exclusive processes.

*This study came out of the "**eA study group**", among many other interesting studies. [Join us, we meet weekly Tuesday 1pm. Send me an email to sign up.]

Backup

ePIC full simulation [Aug 17-Sep 11, 2023]

Number of Issues discovered:

- OMD was not merged in ElCrecon.
- World Material was "Air".
- Container has issues due to some major changes in DD4HEP and GEANT 4.
- ElCrecon issue related to matrix reconstruction.
- npsim Calorimeter threshold issues.
- Beam information not propagated from HEPMC file to ElCrecon.

As of now, these issues were fixed or temporarily fixed