A story in four dimensions

The future of 4D detectors in High Energy Physics

Gabriele D'Amen [Brookhaven National Laboratory, US]

Physics Department Seminar Sep 28, 2023, **Brookhaven National Laboratory**

A particle

This is a **particle**

A particle

Our understanding of the universe is based on our **understanding of its proprieties** with **extreme degree of precision**

The hero's journey

We need a way to go from **this**...

The hero's journey

We need a way to go from this...

....to **this**.

ATLAS Collaboration, Measurement of the Higgs boson mass from the H \rightarrow ZZ* \rightarrow 4ℓ channel with the ATLAS detector using 139 fb⁻¹ of pp collision data

A particle

A particle mess

We need more Time A tree in the forest A real 4D detector

Act I

8

Open questions in Particle Physics

Observation of **Higgs Boson** (2012) confirmed our expectations on fundamental interactions

Coronation of **>50 years of work** by international community...

$$\mathcal{L} = -\frac{1}{4} F_{AV} F^{AV} + i F \mathcal{B} \mathcal{F} + h.c$$

+
$$\mathcal{F}_i \mathcal{Y}_{ij} \mathcal{F}_j \not= h_c$$

+ $|\mathcal{P}_{\mu} \not= |^2 - V(\not=)$

...but now we need to answer everything else...

- Nature of **Dark Matter** and **Dark Energy**?
- Matter/Anti-matter unbalance
- Mass and nature of Neutrino particles
- Hierarchy Problem
- Gravity (and its quantization)
- and many more...

Open questions in Particle Physics

I. Observe them in nature

- Rare events require extreme mitigation of background effects
- Statistics is very low, huge detectors needed

II. Produce them in controlled environment

- Massive particles (t, W/Z, H, ...) require extremely high energies (particle accelerators)
- Very **busy environments**, background can be orders of magnitude higher than event under study

A particle mess

- Billions of particles interactions in very short spans of time (s)...
- ...but not at the same moment
- Knowing when (Time resolution) and where (Space resolution) the interaction happened is fundamental to disentangle underlying physics!
- Silicon detectors are ideal candidates to achieve both!

Tackling the future

Tackling the future

A particle mess

Act II

We need more time

A tree in the forest A real 4D detector

Target time resolution

 $\sigma_{t}^{2} = \sigma_{Landau}^{2} + \sigma_{Time-walk}^{2} + \sigma_{jitter}^{2} + \sigma_{electronics}^{2}$

Landau Noise

Signal distortion caused by distribution of deposited energy in silicon

Time-walk

Difference in perceived Time of Arrival

Can be mitigated using Constant Fraction Threshold

Jitter

Noise leads to uncertainty in time of arrival

Jitter can be mitigated by 'boosting' the signal

 $\sigma_{t}^{2} = \sigma_{Landau}^{2} + \sigma_{Time-walk}^{2} + \sigma_{jitter}^{2} + \sigma_{electronics}^{2}$

Landau Noise

Signal distortion caused by distribution of deposited energy in silicon

Time-walk

Difference in perceived Time of Arrival

Can be mitigated using Constant Fraction Threshold

Jitter

Noise leads to uncertainty in time of arrival

Jitter can be mitigated by 'boosting' the signal

 $\sigma_{t}^{2} = \sigma_{Landau}^{2} + \sigma_{Time-walk}^{2} + \sigma_{iitter}^{2} + \sigma_{electronics}^{2}$

Landau Noise

Signal distortion caused by distribution of deposited energy in silicon

Time-walk Jitter Difference in perceived Time of Arriva Noise leads to uncertainty in Time of Arrival Jitter can be mitigated by 'boosting' the signal Can be mitigated using Constant Fraction Threshold $\sigma_{jitter} = \frac{noise}{\left|\frac{dV}{dt}\right|} = \frac{noise}{\left|\frac{S}{t_{rise}}\right|}$ σ_{noise} Fixed Threshold **Constant Fraction** σ_{iitter} Discrimination

19

Threshold

The Low Gain Avalanche Diode

Low Gain Avalanche Diode (LGAD)

- Achieve Signal "boost" by carefully fine-tuning doping
- Gain Layer: p⁺ under n⁺⁺ creates high (300 kV/cm) and uniform electric field (Avalanche Effect)
- High S/N ratio thanks to gain O(10 100)

 $\sigma_{t}^{2} = \sigma_{Landau}^{2} + \sigma_{Time-walk}^{2} + \sigma_{iitter}^{2} + \sigma_{electronics}^{2}$

Landau Noise

Signal distortion caused by distribution of deposited energy in silicon

Measuring Time resolution

Time resolution levels off at 25 - 30 ps are due to **Landau fluctuations** in particle/sensor interaction (intrinsic)...

125

Time resolution levels off at 25 - 30 ps are due to **Landau fluctuations** in particle/sensor interaction (**intrinsic**)...

...but with better reconstruction, and **thinner sensors** we can bring it down!

Beyond timing

of space [x, y, z]

currently achievable with LGAD

Beyond timing

How to improve space resolution

How to improve space resolution

Higher **granularity** = better space resolution?

Yes...but:

- Technologically very challenging
- Increases readout bandwidth
- Increases power consumption
- What's the alternative?

A particle mess We need more time

Act III

A tree in the forest

A real 4D detector

There is a **tree** in the forest

lt falls

lt **falls**

:(

Where did it fall?

We can fill the forest with **microphones**

×

All the microphones close to the tree will raise a flag *"I have heard it"* (binary information)

We can increase spatial resolution by adding more detectors

...or we can check **how loud** is the sound recorded by each microphone

If each detector gives a **proportional response**, we can better interpolate the result (**Center of Gravity** method)

Can we do the same for particles?

AC-LGAD

- AC-coupled Low Gain Avalanche Detector
- Silicon detector proposed in 2015

AC-LGAD

- **Excellent time resolution** (LGAD-like) thanks to **internal gain**
- Excellent space resolution thanks to Signal Sharing

Shared signal seen by pads

AC-LGAD

- **Excellent time resolution** (LGAD-like) thanks to **internal gain**
- Excellent space resolution thanks to Signal Sharing

Shared signal seen by pads

AC-LGAD

- Signal shared among multiple pads (pixels/strips)
- Pad response proportional to distance to interaction •
- Allows for **high spatial resolution** with low granularity

Shared signal seen by pads

Signal sharing

Signal sharing

Signal sharing

AC-LGAD - Calibration

Shared Signal

Reconstructed position

AC-LGAD - Calibration

AC-LGAD - Calibration

Shared Signal

Calibration

$\chi^2 = \sum_{i=strips} \left(\frac{m^i * x + q^i - f^i}{\sigma^i} \right)^2$

- m^i, q^i : calibration params
- f^i : amplitude fraction observed by i^{th} strip

Reconstructed position

Measurement of space resolution

Space resolution for MIPs measured at protons test beam @FermiLab Silicon Telescope using beam of 120 GeV protons

Signal sharing depends on electrode geometry (pitch, gap size) and resistivity of n+ layer (tunable)

Sensor name	Pitch [um]	Space resolution [µm]	Time resolution [ps]
Hamamatsu "B-2"	500	24 ± 1	27 ± 1
Hamamatsu "C-2"	500	22 ± 1	30 ± 1

Sensor name	Pitch [um]	Space resolution [µm]	Time resolution [ps]
Hamamatsu "B-2"	500	24 ± 1	27 ± 1
Hamamatsu "C-2"	500	22 ± 1	30 ± 1
BNL "Wide"	200	≤ 9	30 ± 1
BNL "Medium"	150	≤ 11	33 ± 1
BNL "Narrow"	100	≤ 9	32 ± 1

Sensor name	Pitch [um]	Space resolution [µm]	Time resolution [ps]
Hamamatsu "B-2"	500	24 ± 1	27 ± 1
Hamamatsu "C-2"	500	22 ± 1	30 ± 1
BNL "Wide"	200	≤ 9	30 ± 1
BNL "Medium"	150	≤ 11	33 ± 1
BNL "Narrow"	100	≤ 9	32 ± 1
BNL "100"	100	< <u><</u> 6	(29 ± 1)

Binary readout:

Space resolution limited by sensor pitch $\sqrt{12}$ *

Proportional readout:

Space resolution improves by a factor ~5 using the same number of pads

AC-LGADs as 4D detectors

AC-LGAD = excellent 4D capabilities

 Space resolution < 6 um</td>

 achievable using AC-LGAD

 technology.

 Can be improved

 tweaking construction

 parameters (doping, pitch, etc)!!!

 Signal Sharing

Chapter IV

A particle mess We need more time A tree in the forest

A real 4D detector

A real 4D detector

"Lab" setup

AC-LGAD read-out using custom discrete electronics and oscillocopes

Real 4D detector

In large-scale systems we need to evaluate AC-LGADs when coupled to **read-out chip (ROC)**

The CMS strip-inner tracker, barrel region

A real 4D detector

Reasons for ROC:

- Scalable solution
- Acquire signal from multiple (O^{6 9}) sensors
- **Digitalize** important parameters of signal (ToA, ToT, etc)
- Pack everything neatly

Reading out AC-LGADs

ATLAS LGAD TIMING ROC

Designed for **LGAD signals** for ATLAS High-Granularity Timing Detector (HGTD)

Outputs two signals per read out strip:

- Analog signal (via Voltage Pre-amp)
- Digital signal (via Discriminator)

Our questions:

- 1. Is it possible to read out AC-LGADs using a chip?
- 2. Can we access AC-LGAD Signal Sharing capabilities?
- 3. What is the impact on Signal Sharing?
- 4. Can we exploit ALTIROC digital signal?

Reading out AC-LGADs

- ALTIROC setup adapted to Transient Current Technique (TCT) station
- Characterization performed with **IR laser** injecting charge onto AC-LGAD
- We can point the IR laser at specific locations on the sensor with 1um precision

Reading out AC-LGADs

Our questions:

- 1. Is it possible to read out AC-LGADs using ALTIROC? **YES**
- 2. Can we access AC-LGAD Signal Sharing capabilities? MAYBE
- 3. What is the impact on Signal Sharing?
- 4. Can we exploit ALTIROC digital signal?

- Colour indicates integral charge of the signal from ALTIROC analog output
- Signal can be seen at ~2 strips of distance (signal sharing)

Our questions:

- 1. Is it possible to read out AC-LGADs using ALTIROC?
- 2. Can we access AC-LGAD Signal Sharing capabilities?
- 3. What is the impact on Signal Sharing?
- 4. Can we exploit ALTIROC digital signal?

input impedance of ALTIROC 0 and

the discrete component board

3. What is the impact on Signal Sharing?

4. Can we exploit ALTIROC digital signal?

AC-LGAD Signal digitalization

- Width (FWHM) of the digital signal proportional to **Time-over-Threshold** (ToT) of the Analog Signal
- Can use Analog signal amplitude as proxy for ToT

AC-LGAD Signal digitalization

- Interaction with beta particles leaves a long tail of deposited energies (Landau)
- Univocal dependence (~linear) on the analog signal amplitude/deposited energy

Our questions:

- 1. Is it possible to read out AC-LGADs using ALTIROC?
- 2. Can we access AC-LGAD Signal Sharing capabilities?
- 3. What is the impact on Signal Sharing?
- 4. Can we exploit ALTIROC digital signal?

Need dedicated readout chip supporting signal sharing!

First readout of AC-LGAD using ASIC!

G.D'Amen et al.. Signal formation and sharing in AC-LGADs using the ALTIROC 0 front-end chip, JINST 17 2022

A readout ASIC for 4D detectors

ALTIROC 0

TARGET SENSOR	DC-LGAD
PIXEL SIZE	1.3×1.3 mm2
CHANNELS	4
PIXEL CAPACITANCE	4 pF
TDC (TOT)	8bit/10bit

EICROC 0

TARGET SENSOR	AC-LGAD
PIXEL SIZE	0.5×0.5 mm ²
CHANNELS	16
PIXEL CAPACITANCE	0.5 pF
ADC (Amplitude)	8bit/10bit

Chapter V

The next step
Time resolution Driven by: Hadronic Colliders

Space resolution Driven by: Hadronic and Leptonic Colliders

Radiation hardness Driven by: Hadronic and Muon Colliders

Material budget Driven by: Muon Colliders, Leptonic Colliders

Power consumption Driven by: Leptonic Colliders (background)

DAQ bandwith Driven by: All Colliders

Time resolution Driven by: Hadronic Colliders

AC-LGAD technology can deliver **excellent 4D performances**

Material budget Driven by: Muon Colliders, Leptonic Colliders

Space resolution Driven by: Hadronic and Leptonic Colliders

Power consumption Driven by: Leptonic Colliders (background)

Radiation hardness Driven by: Hadronic and Muon Colliders

DAQ bandwith Driven by: All Colliders

Time resolution Material budget New extrinsic/compound Driven by: Muon Colliders, Leptonic Colliders Driven by: Hadronic Colliders semiconductors can withstand extremely high fluences Space resolution **Power consumption** Driven by: Hadronic and Leptonic Colliders Driven by: Leptonic Colliders (background) **DAQ** bandwith **Radiation hardness** Driven by: Hadronic and Muon Colliders Driven by: All Colliders

The AC-LGAD Telescope

- Based on AC-LGAD technology
- Portable and modular telescope
- **Baseline** for future 4D studies and developments
- **First test beam** scheduled for Sept 2023 (tomorrow...) at BNL Tandem Van De Graaf

- Next generation of accelerators will pose several experimental challenges; this requires a new generation 4D detector
- AC-LGAD paradigm is a **prime candidate for 4D reconstruction** thanks to its fast timing and signal sharing capabilities

Recap and Future Outlook

- A new detector requires a **dedicated readout system: enter EICROC!**
- We need to **drive advancements** in Material Science, Machine Learning, Detector Design to face what's coming next!

Thank you for your attention

Aknowledgements

- C. De La Taille
- M. Morenas
- N. Seguin-Moreau

from the **OMEGA-CNRS-Ecole Polytechnique** for the ALTIROC and EICROC designs

- K. Nakamura
- S. Kita
- T. Imamura
- K. Hara

from the University of Tokyo and KEK for their support on AC-LGAD testing

- A. Tricoli
- G. Giacomini
- W. Chen
- E. Rossi
- R. Angona
- S. Robinson
- D. Pinelli
- J. Pinz
- A. Verderosa
- T. Kersten

his colleagues at **Brookhaven National Laboratory** for sensor fabrication, board assembly and wire bonding.

- D. Marchand
- C. Munoz Camacho
- L. Serin
- P.-K. Wang

from the Universite Paris-Saclay, CNRS/IN2P3, IJCLab for the design of the readout board and software.

- A. Apresyan
- R. Heller
- C. Madrid

from Fermilab for their work and expertise on the Discrete-RF board

This material is based upon work supported by the U.S. Department of Energy under grant DE-SC0012704. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.