SiPM-on-Tile ZDC HCAL

Miguel Arratia

TIC meeting 10/08/2023

Forward HCAL uses SiPM-on-tile technology

ZDC HCAL might benefit from sharing:

- Design ideas
- R&D and PED
- Simulations and Algorithms
- Personpower
- Bulk purchase and production

Neutron flux in Insert region is similar to that of ZDC https://wiki.bnl.gov/EPIC/index.php?title=Radiation_Doses

Design and mitigation strategies discussed for Insert and HCAL could be used in ZDC

A possible SiPM-on-tile ZDC design like Insert

- SiPMs and bias & readout (HGROC) and scintillator cells (injection molding) relatively inexpensive.
- Reuse 2×10×10 cm³
 Fe absorber blocks from STAR

Reusing STAR HCAL blocks

Modular "LEGO" design ideal for reuse. Can simplify ZDC mechanical design. Zinc plated Fe blocks, ~10x10x2 cm3.

SiPM-on-tile ZDC design

- Accessible PCB boards
 - Allows SiPMs to be annealed to mitigate radiation damage (10¹¹-10¹² 1 MeV-equivalent neutron/cm² per year)
- Fine granularity enables excellent position resolution, software compensation, bkg and radiation resilience

Recipe for Fe/SiPM-on-tile option

- Fe blocks: 2304 units of 10x10x2 cm3 Cost: 0\$ (reused from STAR HCAL) Not even shipping cost!
- **7.5k SiPM-on-tile channels**, each of which is:

1 SiPMs: 1.3 mm size. Cost: ~7\$/unit

1 Tile: ~25 cm2 size. Cost: ~2\$/unit 1 Readout & bias: HGROC ~1-2\$/ch

Staggered design

3D printed frames define layers populated with identical cells

SiPM-on-tile ZDC simulation in DD4HEP and ePIC

- DD4hep plugin for hexagonal segmentation and staggering was added to official DD4HEP core software
 - <u>https://github.com/AIDASoft/DD4hep/pull/1161</u>
- ZDC Fe/SiPM-on-tile was added to official ePIC sim:
 - DD4HEP geometry model
 - Reconstruction benchmark using HEXPLIT
- Neutrons generated over θ <5.5 mrad and full azimuth
- Hit cuts: E > 0.5 MIP, t < 150 ns.

Example neutron showers

Staggering of layers samples better shower direction

Core Portion of Neutron Shower

Staggering leads to partial overlap that can be used to define "subcells". Algorithms can estimate subcell energy according to neighbour info

The HEXPLIT algorithm

arXiv:2308.06939

Define subcells with overlap and assign weights:

 $W_i = \prod_{j=1}^{N-1} \max(E_j, \delta),$ $E_i = E_{\text{tile}} W_i / \sum_j W_j.$

Product over overlapping cells, *j*, in neighboring layers

Energy in a given subcell, i

Same event before and after HEXPLIT

Shower reconstruction

ZDC Neutron position resolution

- Design meets YR requirements with ~25 cm2 cell size, (can be tuned to optimize granularity)
- Meets even ambitious goals relevant for pion structure studies

ZDC neutron simulations, HEXPLIT reconstruction (H4 layout)

Edge effects In position resolution

 Fiducial region (colored) far enough away from edge that edge effects are negligible

- Strawman= add all hits above 0.5 MIP, multiply by sampling fraction of electrons.
- Non-compensated response fixed with AI approach (described in

https://indico.bnl.gov/event/19383/

 Simulation matches closely CALICE AHCAL data, before and after software compensation

Study of edge effects in energy reconstruction

R&D for Insert relevant for SiPM-on-tile ZDC:

- Planned rad damage test at LBNL or UC Davis
- Planned 2nd testbeam at JLab to staggered design and HEXPLIT algorithm
- Planned test beam at RHIC in 2024 to demonstrate In situ calibration, stability, rad damage mitigation

More info of Insert R&D in:

- M. Arratia et al. "Beam Test of the First Prototype of SiPM-on-Tile Calorimeter Insert for the Electron-Ion Collider Using 4 GeV Positrons at Jefferson Laboratory." arXiv:2309.00818
- S. Paul, M. Arratia "Leveraging Staggered Tessellation for Enhanced Spatial Resolution in High-Granularity Calorimeters" arXiv:2308.06939
- M. Arratia et al. "Studies of time resolution, light yield, and crosstalk using SiPM-on-tile calorimetry for the future Electron-Ion Collider" JINST 18 (2023) 05, P05045
- M. Arratia et al. "A high-granularity calorimeter insert based on SiPM-on-tile technology at the future Electron-Ion Collider" Nucl.Instrum.Meth.A 1047 (2023) 167866

Summary

- SiPM-on-tile is an attractive option for ZDC HCAL, as it would bring multiple benefits of piggybacking on forward HCAL. Cost effective implementation of "imaging" design.
- Energy and position resolution studies completed and validated against CALICE AHCAL data. Meet YR requirements over entire fiducial region.
- Can be combined with other ideas such as timing layers

backup

