## Backward Hadronic Calorimeter DSC report

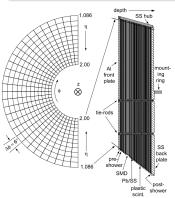
Given at last ePIC Collaboration Meeting in Warsaw

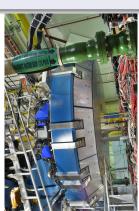
#### Leszek Kosarzewski

Ohio State University

BNL group meeting, BNL 28.9.2023



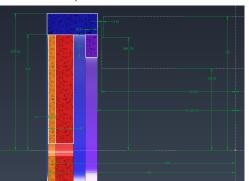

### Outline


- Introduction
- Status of backward HCal DSC
- Geometry implementation in dd4hep
- Calibration
- Position resolution study
- Study of SIDIS events from simulation campaign

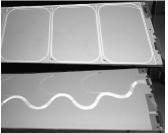
#### Introduction - backward HCal

#### Requirements: https://eic.jlab.org/Requirements/

A future backward HCal shall provide functionality of a tail catcher for the high resolution e/m calorimeter in electron identification, as well as for jet kinematics measurement at small Bjorken  $\times$ 







- Design considerations:
  - High efficiency for neutron detection
  - Good spatial resolution to distinguish neutral/charged hadrons
- Reuse STAR EEMC scintillator megatiles (expected to have lost only  $\sim 5\%$  of light yield): https://doi.org/10.1016/S0168-9002(02)01971-X

## Design

- Sampling calorimeter with 10 alternating layers,  $2.4\lambda^0$  (red), similar to Belle-II KLM:
  - ullet stainless steel 4 cm
  - plastic scintillator 4 mm Kuraray SCSN-81
- Scintillator light guided by 0.83 mm WLS (Kuraray Y11-doped 200 ppm fiber)
- Light collection by SiPM:
  - Candidate (to verify): S14160-1315PS https://www.hamamatsu.com/eu/en/product/optical-sensors/mppc/mppc\_mppc-array/S14160-1315PS.html
- Electronics to follow solutions of other calorimetry systems (HGCROCv3 or EICROC)



STAR EEMC 6° megatile - 12 tiles in  $\eta$  direction (radial) each



nHCal decoupled from the magnetic steel ⇒ more flexibility

## STAR EEMC megatile and connectors





Pictures thanks to Will Jacobs

- $12^{\circ}$  megatile shown (2 rows of 12 tiles in  $\eta$ )
- 0.83 mm diameter WLS fiber contained in  $\sigma$ -shaped grooves
- New, modified connectors need to be made, coupling light to an array of 12 SiPMs each (1 fiber/SiPM, but multiple fibers/SiPM to be considered)
- May need to remain wrapped after disassembly of STAR

#### Status of backward HCal DSC

#### Detector Subsystem Leader

Leszek Kosarzewski leszek.kosarzewski@gmail.com

#### **Detector Subsystem Technical Contact**

Leszek Kosarzewski leszek.kosarzewski@gmail.com

#### Czech Technical University in Prague

- Subhadip Pal (PhD student)
  - simulations, part time
- Alexandr Prozorov (fresh PhD)
  - geometry, clustering, part time





#### Brookhaven National Laboratory

- Roland Wimmer, mechanical engineer
- other experts at BNL



### Ohio State University

Details under discussion

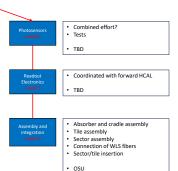


- Looking now for institutions to join and more people to participate!
- Getting a lot of help from other people at BNL and CTU
- National Nuclear Research Center, Poland thinking about joining SiPM tests

## **Backwards HCAL**

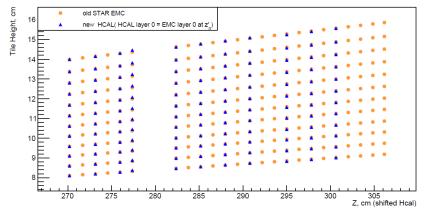
Version 5 Revised 9/28/2023

Design
Level's


- Integration with solenoid
- Investigation of neutral hadron
shower reconstruction techniques

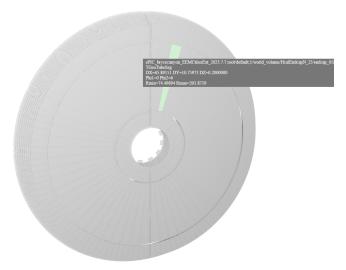
- CTU Prague (Leszek Kosarzewski)

- Cradle and support
- Tile frames
- Insertion mechanics
- BNL (Roland Wimmer)


Scontillating Tiles
- Refurbishment at BNL?
- Beam tests at JLab/Europe/BNL?
- OSU

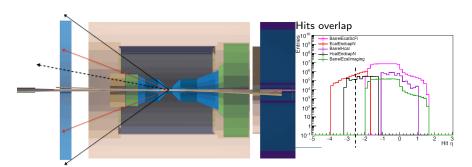
6.10.06.01 Backwards HCAL



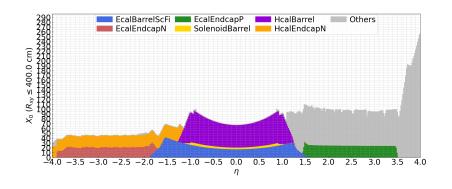

## Choice of megatiles

- Megatile selection algorithm by Alexandr Prozorov
- $\bullet$  Selects megatiles from a layer, which matches the  $\eta$  of the first, to maintain projective structure
- ullet STAR EEMC tiles provide acceptance in  $-2.39 < \eta < -2.195$

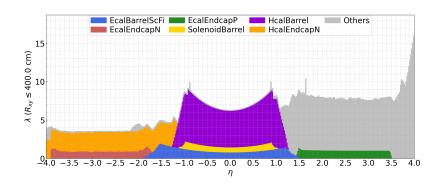



- Extrapolated tiles to cover the region close to beampipe and the outer region
  - extends acceptance to  $-3.06 < \eta < -1.27$

## Geometry implementation in dd4hep

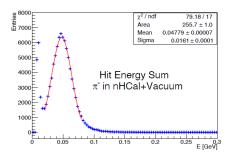



- Exact tile geometry implemented with absorber (no support structures)
- Added extrapolated inner and outer parts with a gap for connectors


#### Acceptance



- Acceptance  $-3.06 < \eta < -1.27$  can still be extended to match the stainless steel absorber volume
- Overlaps with backward and barrel EMcals




- $\sim 24X_0$  for backward HCal
- Scintillator tiles do not cover the same volume as steel absorber yet

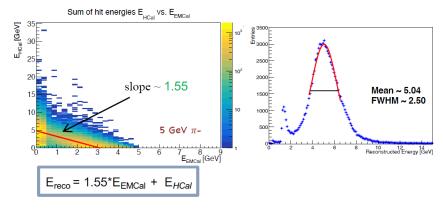


- ullet  $\sim 2.4 \lambda_0$  for backward HCal
- Scintillator tiles do not cover the same volume as steel absorber yet

## Calibration - sampling fraction



| NAME          | VALUE             | ERROR             |
|---------------|-------------------|-------------------|
| Area          | 255.7             | 1.0               |
| Mean<br>Sigma | 0.04779<br>0.0161 | 0.00007<br>0.0001 |


- □ nHCal is calibrated using  $\pi$ □ 1  $\pi$  /event, 1mill events and p = 5 GeV □  $\theta$  = 170° and  $\varphi$  = 45°
  - Sampling Fraction (f) = 0.04779/5.05 = 0.00946

~ 0.0095 +/- 1.4E-05

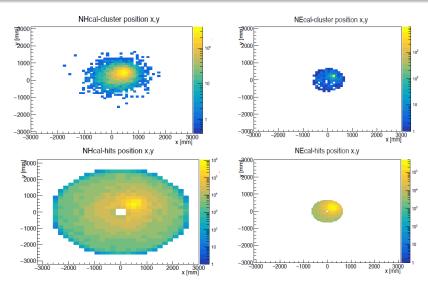
Study by Subhadip Pal

## Calibration - energy sharing

• Study energy sharing between backward HCal and EMCal

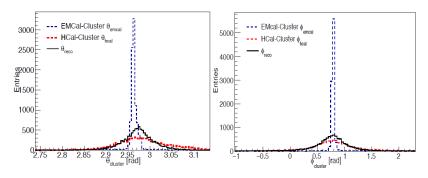


Fitted a linear function to  $E_{HCal}$  vs.  $E_{EMCal}$  histogram to extract the energy sharing parameters


\*  $E_{Hcal}/f \equiv E_{HCal}$ 

Study by Subhadip Pal

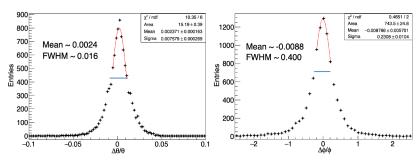
## Position resolution study - algorithm


- Simulated 1 neutron/event,  $p = 5 \,\mathrm{GeV/c}$ 
  - Angular direction:
    - $\theta = 170^{\circ}$  (2.967 rad) •  $\phi = 45^{\circ}$  (0.785 rad)
- Reconstructed clusters in both backward HCal and EMCal are combined with energy weights to have a combined angular position measurement

$$\begin{split} \theta_{RECO} &= w_{EMCal}\theta_{EMCal} + w_{HCal}\theta_{HCal} \\ \phi_{RECO} &= w_{EMCal}\phi_{EMCal} + w_{HCal}\phi_{HCal} \\ w_{EMCal} &= \frac{1.55E_{EMCal}}{E_{RECO}}, w_{HCal} = \frac{E_{HCal}}{E_{RECO}} \end{split}$$



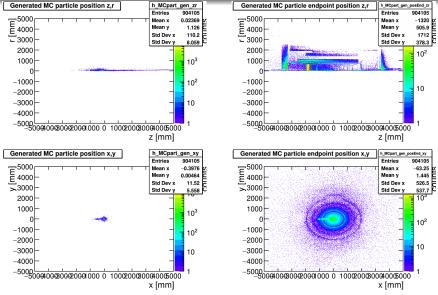
Study by Subhadip Pal


## Angular resolution study



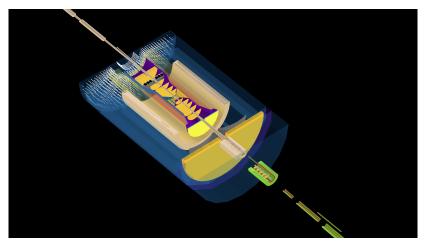
- Simulated 1 neutron/event,  $p = 5 \,\mathrm{GeV/c}$
- Angular direction:
  - $\theta = 170^{\circ}$  (2.967 rad)  $\phi = 45^{\circ}$  (0.785 rad)
- Much better resolution provided by backward EMCal
  - But HCal provides better response to hadrons

Study by Subhadip Pal


## Angular resolution study



- Gaussian fits work only in a narrow range
- $\bullet$  Much worse resolution in the  $\phi$  direction
  - maybe due to proximity to beam


Study by Subhadip Pal

## Primary particles(generated) - with nHCal hits



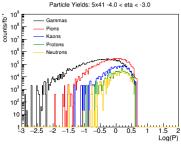
- Primary particles(generated, GenStat==1) with nHCal hits
- Investigating potential bugs and issues with basic particle distributions in full DIS/SIDIS events

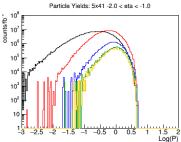
## Simple hit visualization



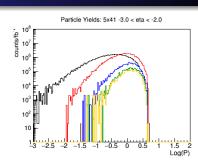
- Simple hit visualization
- May add MC particles or Reco tracks (need magnetic field map)
- More work needed

#### Conclusions

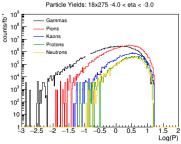

- Realistic geometry implemented in dd4hepp
- More flexibility in the design thanks to decoupling from flux return steel
- Response and calibration studied in simulations
- Position resolution tested with neutrons using backward HCal and EMcal as a combined system
- Tiles can be further extrapolated towards the beam

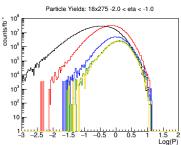

#### Next steps

- Investigate potential bugs in hit-MC particle association
- $\bullet$  Do a scan vs.  $\eta$  and  $\phi$  for position resolution study
- $\bullet$  Test clustering, track matching and neutral shower reconstruction in a realistic e+p event
- Perform simulations of optical photon propagation
- Work with engineers to design support structures and FEE mounting

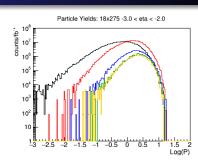

**BACKUP** 

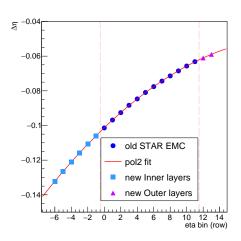
## Jet particle distributions

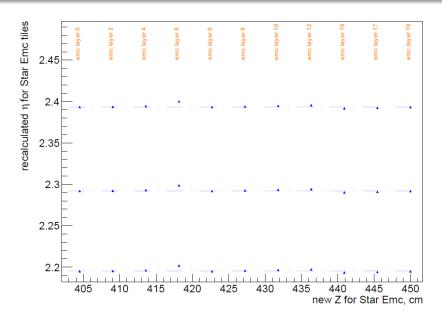


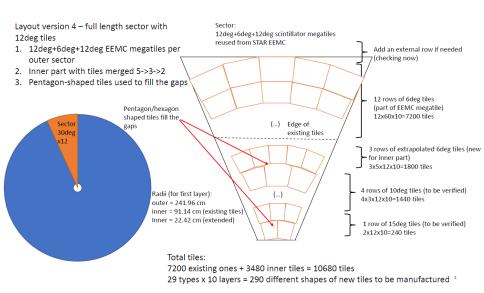




• Pythia simulation by Brian Page





## Jet particle distributions



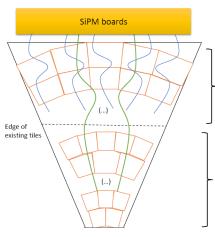




• Pythia simulation by Brian Page







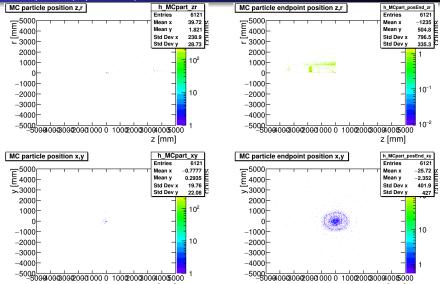



#### Readout version 2

#### Readout - version 2

Extra space needed for the testing/calibration system to send light pulses to the tiles. 2 options

- Add fibers to guide signal from diode/laser mounted outside the detector
- · Add small diodes to the tiles




WLS fibers leading optical signals outward to SiPMs 12/EEMC megatile

Inner part: WLS fibers leading optical signals outward to SiPMs 29/30 deg sector (may need extra space)

28

# Particle distributions - with LFHCAL hits - start(z > 0) and end points(z < 0) (vertices)



- Particles with LFHCAL hits with start vertex z > 0 and stop vertex z < 0
- Still produce hits in LFHCAL! Backscatters? Non-trivial to debug, because not all

x [mm]

x [mm]