The calculation of nucleon electric dipole moments on Lattice

Fangcheng He (Stony Brook University)

In collaboration with Michael Abramczyk, Tom Blum, Taku Izubuchi, Hiroshi Ohki and Sergey Syritsyn

Outline

Introduction to nucleon electric dipole moments

The calculation of EDM on lattice

O Form factor method

• Background field method

Summary

Nucleon electric dipole moments

Matrix element in the CP violation vacuum

BE

BE

P T CP ↓↑

$$\langle N[\bar{q}\gamma^{\mu}q]\bar{N}\rangle_{\mathcal{S}^{\mathcal{H}}} = \frac{1}{Z} \int \mathscr{D}U \mathscr{D}\bar{\psi}\mathscr{D}\psi N[\bar{q}\gamma^{\mu}q]\bar{N}e^{-S-iS_{\theta}} \qquad S_{\theta} = \frac{\theta}{32\pi^{2}} \int d^{4}x Tr[F_{\mu\nu}(x)\tilde{F}^{\mu\nu}(x)]$$

$$\langle p', \sigma'|J^{\mu}|p, \sigma\rangle_{\mathcal{S}^{\mathcal{H}}} = \bar{u}_{p',\sigma'} [F_{1}(Q^{2})\gamma^{\mu} + (F_{2}(Q^{2}) + iF_{3}(Q^{2})\gamma_{5})\frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{N}}]u_{p,\sigma},$$
Electric dipole moment $d_{n} = \frac{F_{3}(0)}{2m_{n}}$

$$H = \mu \overrightarrow{\sigma} \cdot \overrightarrow{B} + d_{n} \overrightarrow{\sigma} \cdot \overrightarrow{E}$$
CP even
CP odd
CP violation
$$|d_{n}| \sim 10^{-31} e^{\cdot}cm.$$

- Beyond Standard Model
- Baryongenesis
- Strong CP problem

Experimental measurement for EDM

Evolution of EDM measurement Snowmass 2021, 2203.08103 **-,10**⁻¹⁹ **Recent EDM limits** Beam 10^{-20} 10^{-21} 10^{-22} 10^{-22} 10^{-23} 10^{-24} **Bragg scattering** $d_n < 2.9 \times 10^{-26} e \,.\, cm$ UCN (Sussex-RAL-ILL) **UCN (PNPI)** UCN (PSI) C. A. Baker, Phys. Rev. Lett. 97(2006) $d_n < 1.6 \times 10^{-26} e.cm$ $\mathbf{\hat{e}}_{10^{-25}}$ B. Graner, Phys. Rev. Lett. 116(2016) $d_n = (0.0 \pm 1.1_{stat} \pm 0.2_{svs}) \times 10^{-26} e . cm$ **10⁻²⁷** C. Abel et al, Phys. Rev. Lett. 124(2020) 10^{-28} 10^{-29} 1970 1980 1990 2000 2010 2020 2030 2040 1960 **Standard Model Publication year** prediction

 $|d_{\rm n}| \sim 10^{-31} e \cdot {\rm cm}.$

Effective CPv operators

CP violated interactions

Lattice QCD

 In lattice QCD method, the correlation functions are nonperturbatively calculated using path integral.

Discretization the QCD action in Euclidean space

Partition function

$$Z = \int \mathcal{D}[U] e^{-S_G[U]} \prod_f \det(D[U] + m_f)$$

The expectational value of operator

$$\langle O_n \rangle = \frac{1}{Z} \int D[U] O_n[U, m_f] e^{-S_G[U]} \prod_f \det(D[U] + m_f)$$

The configurations are distributed according to

$$\frac{1}{Z} \exp(-S_G[U]) \prod_f \det(D[U] + m_f)$$

$$\langle O_n \rangle = \frac{1}{N} \sum_{n=1}^N O_n(U_n, m_f)$$

Outline

Introduction to nucleon electric dipole moments

The calculation of EDM on lattice

O Form factor method

• Background field method

Summary

CP violation matrix element on Lattice

• Expansion of coupling constants

Aoki et al (2005); Berruto et al (2005); Shindler et al (2015) ; Alexandrou et al (2015) ; Shintani et al (2016); Dragos et al(2019); Alexandrou et al(2020); Bhattacharya et al (2021) ;Liang et al (2023)

Dynamical simulation including imaginary phase term

The calculation of theta EDM on lattice

- Energy shift in the background field **Background electric field method** 1.002 Neutron, R^(w/oθ=0) E. Shintani et al, 2005 $\Delta E = \frac{d_n}{2} \overrightarrow{\sigma} \cdot \overrightarrow{E}$ 1.001 $C_{2pt} \sim \langle N_{\alpha}(t)\bar{N}_{\alpha}(0)e^{i\theta Q}\rangle_{\vec{E}} \sim \exp\left(-m_{N}^{\theta}(E^{2})t - \frac{d_{N}(\theta, E^{2})}{2}\vec{\sigma}\cdot\vec{E}t\right)\right]$ [▼] ▼ ₹ ₹ ₹ ₹ . CP violated nucleon 2pt in 0.999 the background field E=0.004, 0=0.1 E=-0.004.0=0. 0.998 10 t
 - Form factor is widely used to extract EDM on lattice QCD, one needs to calculate the "3pt correlation function" with topological charge.

Lattice vs phenomenology

The comparison of lattice results (pre-2017) with phenomenological results

Phenomenological results

method	value	
ChPT/NDA	$\sim 0.002~{\rm e~fm}$	
QCD sum rules [1,2]	$0.0025 \pm 0.0013~{\rm e~fm}$	
QCD sum rules [3]	$0.0004^{+0.0003}_{-0.0002}$ e fm	
[1] M Pospelov A Ritz (2000)		

- [2]. M. Pospelov, A. Ritz (1999)
- [3]. J. Hisano, J.Y. Lee, N. Nagata, Y. Shimizu(2012)

Lattice results $d_n/\theta \sim 10^{-2}e \, . fm$ Phenomenological results $d_n/\theta \sim 10^{-3}e \, . fm$

The lattice results are an order magnitude larger than the phenomenological results.

10/28

Mixing between dipole and Pauli form factors

M. Abramczyk, et al 2017

 α for theta EDM

• Dirac spinor in CPv vacuum and CP even vacuum

 $\langle 0|N|p,\sigma\rangle_{\mathcal{GP}} = \tilde{u}_{p,\sigma} \qquad \tilde{u}_{p,\sigma} = e^{i\alpha\gamma_5}u_{p,\sigma}$

The matrix element in CPv vacuum

$$\begin{split} \langle p', \sigma' | J^{\mu} | p, \sigma \rangle_{\mathcal{P}} &= \bar{\tilde{u}}_{p', \sigma'} \left[\tilde{F}_1(Q^2) \gamma^{\mu} + \left(\tilde{F}_2(Q^2) + i\tilde{F}_3(Q^2) \gamma_5 \right) \frac{i\sigma^{\mu\nu} q_{\nu}}{2M_N} \right] \tilde{u}_{p, \sigma}, \\ &= \bar{u}_{p', \sigma'} \left[F_1(Q^2) \gamma^{\mu} + \left(F_2(Q^2) + iF_3(Q^2) \gamma_5 \right) \frac{i\sigma^{\mu\nu} q_{\nu}}{2M_N} \right] u_{p, \sigma}, \end{split} \overset{\tilde{F}_3 \text{ is used to define}}{= \bar{u}_{p', \sigma'} \left[F_1(Q^2) \gamma^{\mu} + \left(F_2(Q^2) + iF_3(Q^2) \gamma_5 \right) \frac{i\sigma^{\mu\nu} q_{\nu}}{2M_N} \right] u_{p, \sigma}, \end{split}$$

- The "old definition" of EDFF \tilde{F}_3 , which is used in lattice calculation prior to 2017 includes a spurious contribution from Pauli form factor.

Relation between
$$\tilde{F}_3$$
 and F_3
 $\tilde{F}_3 = F_3 - 2\alpha F_2$
Correct EDM $d_n = \frac{F_3(Q^2 \to 0)}{2m_N}$

Lattice results after subtracting the mixing term

Correction to the electric dipole form factor

Θ-nEDM before and after correction M. Abramczyk, et al 2017

				2	16 1 76 12 13		*	
			$m_{\pi} [{ m MeV}]$	$m_N[{ m GeV}]$	F_2	α	$ ilde{F}_3$	F_3
[ETMC 2016]	[10]	n	373	1.216(4)	$-1.50(16)^{b}$	-0.217(18)	-0.555(74)	0.094(74)
	5	\boldsymbol{n}	530	1.334(8)	-0.560(40)	$-0.247(17)^{a}$	-0.325(68)	-0.048(68)
[Shintani et al 2005]		p	530	1.334(8)	0.399(37)	$-0.247(17)^{a}$	0.284(81)	0.087(81)
	6	\boldsymbol{n}	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.52)
[Berruto et al 2006]		n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.98)
	8	n	465	1.246(7)	$-1.491(22)^{c}$	$-0.079(27)^d$	-0.375(48)	$-0.130(76)^d$
[Guo et al 2015]		n	360	1.138(13)	$-1.473(37)^{c}$	$-0.092(14)^d$	-0.248(29)	$0.020(58)^d$
				1. <u>19. 17. 19.</u>				

The results after subtracting the mixing term are consistent with zero but very noisy

Variance reduction

Signal saturates at $t_s = \tau$

Signal saturates at $R \sim 10a$

Recent lattice results

• Recent results about theta EDM (after 2017)

	Neutron EDM(e.fm)	Proton EDM(e.fm)
Dragos et al(2019);	$d_n/\theta = -0.00152(71)$	$d_p/\theta = 0.0011(10)$
Alexandrou et al(2020);	$ d_n/\theta = 0.0009(24)$	
Bhattacharya et al (2021) ;	$d_n/\theta = -0.003(7)(20)$	$d_p/\theta = 0.024(10)(30)$
Liang et al (2023)	$d_n/\theta = -\ 0.00148(14)(31)$	$d_p/\theta = 0.0038(11)(8)$

method	value
ChPT/NDA	$\sim 0.002~{\rm e~fm}$
QCD sum rules [1,2]	$0.0025 \pm 0.0013~{\rm e~fm}$
QCD sum rules [3]	$0.0004^{+0.0003}_{-0.0002}$ e fm

Using the correct definition of F_3 , the lattice results are more consistent with the phenomenological results

Outline

Introduction to nucleon electric dipole moments

The calculation of EDM on lattice

• Form factor method

O Background field method

Summary

Background electric field method

Neutron energy shift in background electric field $\Delta E = d_n \vec{S} \cdot \vec{\epsilon}$ E. Shintani et al, 2005

The constant background electric field on Lattice

The setup of U(1) gauge link

$$\begin{split} U_{\mu} &\to e^{iqA_{\mu}}U_{\mu} \\ A_{z}(z,t) &= - \,\epsilon_{z}t \\ \end{split} \begin{array}{l} \epsilon_{z} : \text{Strength of} \\ \text{background field} \\ \end{split}$$

$$A_t(z, L_t - 1) = \epsilon_z z \times L_t$$

Quantization condition

$$\epsilon_z = \frac{6\pi}{L_t L_x} n \qquad n = \pm 1, \pm 2, \dots$$

Topological charge under gradient flow

$$\begin{array}{ll} \mbox{[M.Luscher, JHEP08:071; 1006.4518]} \\ \mbox{Gradient flow} & \mbox{$\frac{d}{dt_{\rm GF}}B_{\mu}(t_{\rm GF})=D_{\mu}G_{\mu\nu}(t_{\rm GF}), \quad B_{\mu}(0)=A_{\mu}$} \\ \mbox{Tee level results of gradient flow} & \mbox{$B_{\mu}(x,t_{\rm GF})\propto\int d^4y\,\exp\left[-\frac{(x-y)^2}{4t_{\rm GF}}\right]A_{\mu}(y)$} \\ \mbox{Topological charger with} & \mbox{$\tilde{Q}(t_{\rm GF})=\int d^4x\,\frac{g^2}{32\pi^2}\left[G_{\mu\nu}\widetilde{G}_{\mu\nu}\right]\Big|_{t_{\rm GF}}$} \\ \end{array}$$

remove the UV fluctuation in Q

Q tends to be integer number $\stackrel{(x)}{\xrightarrow{b}}$

o diffusion of top.charge density

 $q(x)q(0) \sim exp[-(x-y)^2/8t_{GF}]$

Numerical results of EDM

• The EDM can be extracted from the energy shift of 2pt in the background electric field (T. Izubuchi et al 2020)

$$C_{\mathcal{QP}}^{2\text{pt},\vec{E}}(\vec{0},t) = \langle N(t)\bar{N}(0)e^{i\theta Q}\rangle_{E} = C_{2\text{pt},\vec{E}}(\vec{0},t) + C_{2\text{pt},\vec{E}}^{Q}(\vec{0},t)$$
$$= |Z_{N}|^{2} \left(\frac{1+\gamma_{4}}{2} - i\frac{\kappa}{2m^{2}}\gamma_{3}\gamma_{4}\varepsilon_{z}\right)e^{-m_{N}t} + |Z_{N}|^{2} \left(i\alpha\gamma_{5} - \frac{1+\gamma_{4}}{2}\sum_{Z}\delta Et + \frac{\kappa}{m^{2}}\sum_{Z}\gamma_{5}\varepsilon_{z}\right)e^{-m_{N}t}$$

0.03

Ξ

6

tf

10

8

12

- 2pt with Tp topological charge $C^{Q}_{2pt,\vec{E}}(0,t) = \sum_{\vec{y}} \langle N(\vec{y},t) \left(\sum_{\tau_q=0}^{T} \sum_{\vec{x}} [Q(\vec{x},\tau_q)] \right) \bar{N}(\vec{0},0) \rangle_{\vec{E}} \qquad \begin{bmatrix} \delta E = d_{p} \\ \sum_{\tau_q} \cdot -i\gamma \end{bmatrix}$
- The extraction of EDM

$$d_{n} \propto \frac{\mathrm{Tr}[\Sigma_{Z}C_{2pt,\vec{E}}^{Q}(0,t_{f})]}{\mathrm{Tr}[C_{2pt,\vec{E}}(0,t_{f})]} - \frac{\mathrm{Tr}[\Sigma_{Z}C_{2pt,\vec{E}}^{Q}(0,t_{f}-1)]}{\mathrm{Tr}[C_{2pt,\vec{E}}(0,t_{f}-1)]} \xrightarrow[0.02]{0.02}$$

Spectrum decomposition

• The spectrum decomposition of 2pt with topological charge $C_{2pt,\vec{E}}^{Q}(0,t) = \sum_{\vec{y}} \langle N(\vec{y},t) \left(\sum_{\tau_{q}=0}^{T} \sum_{\vec{x}} [Q(\vec{x},\tau_{q})] \right) \bar{N}(\vec{0},0) \rangle_{\vec{E}} = |Z_{N}|^{2} \left(i\alpha\gamma_{5} - \frac{1+\gamma_{4}}{2} \Sigma_{Z} \delta E t + \frac{\kappa}{m^{2}} \Sigma_{Z} \gamma_{5} \varepsilon_{z} \right) e^{-m_{N}t}$ $C_{2pt,\vec{E}}^{Q}(0,t) = \sum_{\vec{y}} \langle N(\vec{y},t) \left(\sum_{\tau_{q}=0}^{t} \sum_{\vec{x}} [Q(\vec{x},\tau_{q})] \right) \bar{N}(\vec{0},0) \rangle_{\vec{E}} + O(e^{-E_{s}t})$ $0 < \tau_{q} < t$

EDM is related to the local operator

in the ground state

t

IN

t=0

Results using local topological(tp) charge

The comparison of results obtained using local and global topological charge

The noise is suppressed at larger gradient flow time.

The plateau will be shifted due to the diffusion.

The extraction of gradient flow diffusion effect

• The diffusion effect in the gradient flow

 $\tilde{q}(t_2^{gf};\tau) = \int dt' K(t_2^{gf} - t_1^{gf}; |\tau - \tau'|) \tilde{q}(t_1^{gf}; \tau') \xrightarrow{\text{Fourier}} \tilde{q}(t_2^{gf}; \omega) = K(t_2^{gf} - t_1^{gf}; \omega) \tilde{q}(t_1^{gf}; \omega)$

The diffusion kernel can be extracted through

$$K(t_2^{gf} - t_1^{gf}; \tau) = \widetilde{\mathrm{FT}}_{\omega \to t} \left[\sqrt{\frac{\mathrm{FT}_{\tau_2 \to \omega} [\langle \tilde{q}(t_2^{gf}; 0) \tilde{q}(t_2^{gf}; \tau_2) \rangle]}{\mathrm{FT}_{\tau_1 \to \omega} [\langle \tilde{q}(t_1^{gf}; 0) \tilde{q}(t_1^{gf}; \tau_1) \rangle]}} \right]$$

Diffusion kernel under gradient flow

Normalization $\sum_{\tau} K(t_{gf}; \tau) = 1$ **The correlation length become larger with increasing** t_{gf}

The correlation will be zero when $\tau > 6$

22/28

Fit ansatz and results of ground state

Fit ansatz including smearing effect

Gradient flow diffusion effect $\tilde{q}(t_2^{gf}; \tau) = \int dt' K(t_2^{gf} - t_1^{gf}; |\tau - \tau'|) \tilde{q}(t_1^{gf}; \tau')$ **3pt including diffusion effect** $\tilde{C}_3(t_2^{gf}; t, t_f) = \sum K(t_2^{gf} - t_1^{gf}; |\tau - \tau'|) C_3(t_1^{gf}; \tau', t_f)$

Result of Ground state

 $d_n = 0.007(2)$

Numerical results

• The information of configurations we used

Lattice size	Lattice spacing	Pion mass	Statistics
$24^3 \times 64$	0.1105fm	340MeV	1400cfgs
$24^3 \times 64$	0.1105fm	420MeV	1100cfgs

$$\Delta_E = \langle N \uparrow | \sum_{\overrightarrow{x}} q(\overrightarrow{x}) | N \uparrow \rangle_E = \frac{d_n}{\theta} \epsilon_z$$

Pion mass	$d_n/ heta$
340MeV	0.007(2)
420MeV	0.006(2)

Chiral extrapolation

Talk by F. He at Lattice 2023

The chiral extrapolation of EDM to the physical point

Linear extrapolation:
$$d_n = c_0 m_\pi^2$$

ChPT extrapolation: $d_n = c_1 m_\pi^2 + c_2 m_\pi^2 log(m_\pi^2)$
The EDM should vanish
in the chiral limit

Summary of neutron θ-EDM from Lattice QCD

• The summary of $\theta\text{-EDM}$ calculation from Lattice QCD

Topological charge using Fermionic definition

partially conserved axial current (PCAC) relation

$$\partial_{\mu}A^{\mu} = -2i\frac{1}{32\pi^2}tr_c(F\tilde{F})(x) + 2im_q\bar{q}\gamma_5q(x),$$

Topological charge $Q = \sum_{x} \frac{1}{32\pi^2} tr_c(F\tilde{F})(x) = \sum_{x} m_q \bar{q} \gamma_5 q(x),$

EDM using gluonic definition

EDM using Fermionic definition

better signal.

Summary

Summary:

- Lattice calculation of EDM is challenging. The lattice results prior to 2017 suffered spurious mixing problem.
- We introduce and compare the form factor method and background field method, the results obtained using different methods are consistent.
- The EDM calculated using the topological charge defined by fermionic operator has better signal.

Thank you for you attention!