Diffractive Physics from LHC to EIC probing gluons in nuclei with photoproduction

Minjung Kim (UC Berkeley / CFNS, Stony Brook U.)

> 2023 CFNS Postdoc Meet 17. Oct. 2023 (TUE)

Probing gluons in nuclei

- Nucleus gluon field is not simple superposition of A nucleon fields
- regime state occur?
- Saturation is expected to set at higher x in heavy nuclei!

Minjung Kim **UC Berkeley**

More general question: Where and how does the transition from a dilute parton system to a dense gluon

Ultra-peripheral heavy-ion collisions at the LHC

- EM field from ultra-relativistic ions: a beam of quasi real photons (intensity ≈ Z²)
- Photon energy frontier: up to ~ 500 TeV in target frame at the LHC energies
- Photo-nuclear interaction in ultra-peripheral collisions (UPC): collisions with an impact parameter greater than the sum of the radii of the colliding nuclei, in which hadronic interactions are strongly suppressed
- Lowest-order cross section proportional to the gluon distribution, leading final states such vector meson or dijet
- Coherent and incoherent processes provide complementary informations on gluon density

Vector meson photoproduction in UPC

- Photon fluctuates to a $q\bar{q}$ dipole which then elastically scatters off the nucleus, emerging as vector meson having $J^{PC} = 1^{-1}$
- Kinematic variables are accessible via measurement:
 - photon virtuality: $Q^2 \sim (M_V/2)^2$

Bjorken-x:
$$x_B = \frac{M_V}{\sqrt{s_{NN}}} e^{\pm y_V}$$

- Photon-target center of mass energy: $W_{\gamma-\text{target}}^2 = 2E_{\text{target}}M_V e^{\mp y}$
- Mandelstam t probing transverse structure of the target: $|t| \approx p_{\rm T}^2$

Photon two-way ambiguity in UPC

Ambiguity due to sign in the rapidity of the photon emitter

 $x_B = \frac{M_V}{\sqrt{s_{NN}}} e^{\pm y_V}, i \cdot e \cdot y = 3 \rightarrow x \approx 10^{-2} \text{ or } 10^{-5} \text{ for J/}\psi \text{ at LHC energies}$

 High probability to exchange one or more additional (low energy) photons in a UPC, leading electromagnetic dissociation of ions, to breakup of the nucleus

 \Rightarrow Neutrons emitted in the forward direction Guzey et al., Eur.Phys.J.C 74 (2014) 7, 2942

 Probability to emit additional photons is assumed to factorize in impact parameter space

 \Rightarrow ZDC measurements provide impact parameter information for photon flux estimation

²⁰²³ CFNS postdoc Meet 17. Oct. 2023

Photon two-way ambiguity in UPC

Ambiguity due to sign in the rapidity of the photon emitter

 $x_B = \frac{M_V}{\sqrt{s_{NN}}} e^{\pm y_V}, i \cdot e \cdot y = 3 \rightarrow x \approx 10^{-2} \text{ or } 10^{-5} \text{ for J/}\psi \text{ at LHC energies}$

• High probability to exchange one or more additional (low energy) photons in a UPC, leading electromagnetic dissocia to breakup of the nucleus

 \Rightarrow Neutrons emitted in the forward direction Guzey et al., Eur.Phys.J.C 74 (2014) 7, 2942

Probability to emit additional photons is assumed to impact parameter space

 \Rightarrow ZDC measurements provide impact parameter inf photon flux estimation

A system of equations which can be solved to extract $\sigma_{\gamma A}(W_1)$ and $\sigma_{\gamma A}(W_2)$

Exclusive photoproduction of J/ψ

Minjung Kim UC Berkeley

Good-Walker formalism links coherent and incoherent production to the average nuclear configuration and event-by-event fluctuations respectively $< p_{\rm T} > \propto 1/R_{\rm ion} \approx 50 \ {\rm MeV}/c$ ∧_{Coherent} $< p_{\rm T} > \propto 1/R_{\rm nucleon} \approx 500 \text{ MeV/}c$ Λ_{Incoherent} S. Klein, Phys. Rev. C 107, 055203 Caveat: UPCs and eA collisions may involve multiple photons; other possible sub-reactions or different time-scale,... \Rightarrow Interpretation of incoherent production is not trivial! $p_{_{T}}$ (GeV/c)

Coherent J/ψ photoproduction constraining gluon density

- 2-fold photon directional ambiguity in forward rapidity: $x \in (1.1, 5.1) \times 10^{-5} \text{ or } x \in (0.7, 3.3) \times 10^{-2}$

Minjung Kim UC Berkeley

• Midrapidity: $x \in (0.3, 1.4) \times 10^{-3}$, compatible with models predicting moderate shadowing

Energy/Bjorken-x dependence coherent J/ψ photoproduction

- Complementary measurements of ALICE and CMS in wide energy (Bjorken-x) range
- While impulse approximation and STARlight work at low energies, shadowing and saturation based models describe suppression at high energies

Itl-dependent coherent J/ψ in UPCs

Minjung Kim UC Berkeley The square of the momentum transferred to the target nucleus is related through a twodimensional Fourier transform to the gluon distribution in the plane transverse to the interaction

(b and t are Fourier conjugates)

The lowest-order pQCD coherent vector meson photoproduction:

$$\frac{d\sigma_{\rm coh}}{dt} = \frac{\pi^3 \alpha_{\rm s}^2 M^3 \Gamma_{V \to e^+ + e^-}}{3\alpha_{\rm em}} \left[\frac{1}{(2q^2)^2} xg(x, q^2)\right]^2 F_{\rm N}^{2g}(t)^2$$

Phenomenological two-gluon form factor describing gluon distribution of nucleus in transverse plane

 Falls off more steeply than the Woods-Saxon nuclear form factor; consistent with dipole model calculations that include nuclear shadowing and/ or gluon saturation

Itl-dependent incoherent J/ψ in UPCs

Minjung Kim UC Berkeley

- Models including gluonic subnucleon fluctuations (hot spots or dissociation) agree better with the slope of the measurement
 - First measurement of its kind ever \Rightarrow complementary measurements needed

J/ψ photoproduction: updates from theory

- pQCD calculation with shadowing:
 - at LO: only gluon contributes
 - at NLO: quark and additional internal gluon
- **Considerable scale dependence**
- Difficult to reproduce rapidity dependence in measurements

Fig. 1. Graphical representation of the $\gamma + A \rightarrow J/\psi + A$ amplitude in NLO pQCD: gluon (left) and quark (right) contributions.

J/ψ photoproduction: updates from theory

- pQCD calculation with shadowing:
 - at LO: only gluon contributes
 - at NLO: quark and additional internal gluon
- Considerable scale dependence
- Difficult to reproduce rapidity dependence in measurements
- Large contribution of quarks (and additional interference); LO and NLO gluon amplitudes tend to cancel

Fig. 1. Graphical representation of the $\gamma + A \rightarrow J/\psi + A$ amplitude in NLO pQCD: gluon (left) and quark (right) contributions.

17. Oct. 2023

J/ψ photoproduction: updates from theory

- pQCD calculation with shadowing:
 - at LO: only gluon contributes
 - at NLO: quark and additional internal gluon
- Considerable scale dependence
- Difficult to reproduce rapidity dependence in measurements
- Large contribution of quarks (and additional) interference); LO and NLO gluon amplitudes tend to cancel
- Dipole picutre: inclusion of higher qqg Fock states by introducing 3-body dipole cross section and wave function better describes the measurements

A. Łuszczak, W. Schäfer, arXiv:2108.06788

Figure 1: Coherent photoproduction of a vector meson in which the nucleus stays in its ground state.

Photon-induced processes not covered today.....

UC Berkeley

FOCAL: a Forward Calorimeter in ALICE (Run 4)

3.4 < *η* < **5.8** FOCAL

Positioned 7 m from IP2 (A-side)

CERN Yellow Rep. Monogr. 7 (2019) 1159-1410, arXiv 1812.06772

	σ	Central 1	Forward 1
Meson		Total	Total 1
$ ho o \pi^+ \pi^-$	5.2b	5.5 B	4.9 B
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	210 M	190 M
$\phi ightarrow { m K}^+ { m K}^-$	0.22b	82 M	15 M
${\rm J}/\psi \to \mu^+\mu^-$	1.0 mb	1.1 M	600 K
$\psi(\mathrm{2S}) o \mu^+ \mu^-$	30µb	35 K	19 K
$ m Y(1S) ightarrow \mu^+ \mu^-$	$2.0 \ \mu b$	2.8 K	880
		-	

Minjung Kim UC Berkeley

y < 0.9 2.5 < y < 4

J/ψ photoproduction with FOCAL

- Extend the range for J/ ψ reconstruction to 3.4 < η < 5.8
- Corresponding to $W_{yp} > 1$ TeV and $x < 10^{-5}$

Photoproduction at EIC with the EPIC detector

• Wide range of photon Q2 with high luminosity and optimized detector for precision measurement

Photoproduction with the EPIC detector

- Full simulation chain, from generator to reconstructed objects, is ready with
 - EPIC geometry (updated time to time for the latest design)
 - Reconstruction algorithms (inc. tracking, clustering,...)
- Photoproductions of various vector mesons are studied under diverse conditions
 - Acceptance and kinematic limitation
 - Separation of coherent/incoherent contribution

-

Acceptance of final state particles for J/ψ photoproduction

First look of Y (nS) photoproduction

Summary and outlook

- Photoproduction measurements at the LHC provide valuable inputs for studying the nuclear structure at high energies (small Bjorken-x), dense gluon system
- LHC Run 3 Pb-Pb data taking campaign is coming soon. Run 4 with ALICE FoCAL will extend kinematic coverage of down to x < 10⁻⁵
- Full simulation chain, from generator to reconstructed objects, is ready for EPIC: various studies of photoproduction and diffractive physics are ongoing! \Rightarrow stay tuned!
- EIC and UPCs (at the RHIC and LHC) are complementary, respectively providing precision measurements for different photon Q² and probes of low x gluons

Ultra-peripheral heavy-ion collisions at the LHC: Photon energy frontier

- EM field of ultra-relativistic ions → a beam of quasi real photons (intensity ≈ Z²)
- Photon energy frontier: up to ~ 500 TeV in target frame at the LHC energies
- Photons can then fluctuate into a hadronic object or a colour dipole
- Ultra-Peripheral Collision (UPC): b > 2R
 →hadronic interactions are strongly suppressed
- Coherent (Incoherent) photoproduction: photon couples to all nucleons in whole nucleus (a single nucleor ALICE Pb-Pb UPC VS_NN = 5.02 TeV ion)

Coherent J/ψ photoproduction in Pb-Pb collisions

first ALICE measurement: PRL 116 (2016) 222301

- Collisions J. G. Contreras, PRC 96 (2017) 015203

Minjung Kim **UC Berkeley**

Low $p_T J/\psi$ ($p_T < 0.3$ GeV/c) large excess \rightarrow coherent J/ ψ photoproduction in Pb-Pb collisions UPC based model including overlap effect qualitatively describes the trend of data in peripheral

J/ψ photoproduction - NLO

