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low-Q2 region. This can be understood from the fact that
Q2 ∝ 1

λ, where λ is the wavelength of the photon. At lowQ2,
the photon has a large wavelength and can interact with
many nucleons at once. However, for high Q2, the wave-
length of the photon is small, and, therefore, fewer nucleons
participate in the interaction. No difference as a function of
xbj for these two shadowing models is found.

V. DISCUSSION

In the previous sections, we compared ep DIS events
from the PYTHIA event generator to data from the ZEUS
experiment at HERA, as well as μXe and μD collision
results from the BeAGLE event generator and E665 data
at Fermilab. The results show that we can tune the PYTHIA

model to describe target fragmentation in ep collisions,
while BeAGLE cannot fully describe the target fragmen-
tation region in eA at E665. Model uncertainties, e.g., τ0,
and insufficient knowledge of the experimental selection
in E665 might be responsible for the observed discrep-
ancy. In order to further improve our understanding on the

way toward the EIC, currently available ultraperipheral
collisions (UPC) data at the Relativistic Heavy-Ion
Collider, e.g., the recent data of J=ψ photoproduction
in the deuteron-gold UPC [56], and UPC data from the
Large Hadron Collider, will be extremely valuable, along
with tagged target fragmentation studies at the continuous
electron beam accelerator facility at Jefferson Lab. These
data provide a new pathway for study and validation and
improvement of the BeAGLE generator.
In addition, BeAGLE currently cannot simulate coherent

diffraction in eA due to the construction of the model. This
is closely related to the determination of the formation time
parameter, e.g., τ0. Another future plan for the BeAGLE
development will be in this area, where coherent diffraction
will provide important insights into the underlying gluon
dynamics in the nucleus.
In parallel to this work, there are recent efforts in

improving the parton energy loss model PyQM in a different
study [31], modification of the DIS kinematics in light
nuclei to account for Fermi momentum, implementation of
the EMC effect [57–61], and short-range correlations using
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FIG. 14. (a) The correlation between the deposited energy in the ZDC and impact parameter b. (b) b distributions for both central and
peripheral collisions. (c) The correlation between the deposited energy in the ZDC and the nuclear thickness TðbÞ=ρ0. (d) TðbÞ=ρ0
distributions for both central and peripheral collisions. Note that all of these distributions are in the MC generated level, without detector
smearing.
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I. INTRODUCTION

Most of the atomic nuclei in their ground state are deformed from a well defined spherical shape. The deformation
has non-trivial dependence on the proton and neutron number, especially in the vicinity of full shell or subshell,
reflecting collective motion induced by interaction between valence nucleons and shell structure [1]. The collective
motion leads to characteristic rotational spectra of nuclear excited state, where the electric multi-pole transition
probability B(En) between low-lying rotational states with n�h di↵erence in angular momentum can be used to infer
the shape parameters. Past e↵orts have led to the discovery of a rich variety of phenomena, such as quadrupole
deformation, shape evolution, triaxiality/shape coexistence, octupole deformation, hexadecapole deformation and
other exotic shapes [2–6].

No-one has directly observed the deformed nucleus, however. This is because the nucleus is deformed in the so-
called intrinsic (body-fixed) frame, and its wave function in the laboratory frame actually does not pick a particular
direction. The typical scattering experiments probe the nuclear form factors averaged over all orientations, and the
static deformation appears mostly as an increased surface thickness [7]. On the other hand, high-energy heavy ion
collisions at RHIC and the LHC, as illustrated in Fig. 1, can image the shape of the nucleus by colliding them together
and looking at the collective expansion of the produced system responding to the geometry of the overlap. In these
collisions, two Lorentz-contracted nuclei, by a factor of 100 at RHIC and more than a factor of 1000 at the LHC, cross
each other over a time scale ⌧ < 0.1fm/c ≈ 3 × 10−24s, forming a hot and dense quark-gluon plasma (QGP) [8] in the
overlap region, whose initial shape is correlated with the deformed shape of the nuclei. Driven by the large pressure
gradient forces, the QGP expands hydrodynamically, converting the spatial anisotropies into azimuthal anisotropies
of final-state particles in the momentum space [9]. Nuclear shape imaging is possible because each collision probes
simultaneously the entire mass distribution of the nuclei, and one can use particle correlations among thousands of
produced particles to infer the two-point and multi-point correlations of this mass distribution and hence its spatial
shape. Since the time scales involved in these collisions are much shorter (< 10−24s) than the typical timescale of the
rotational bands (10−21s [10]), this raises an important question of whether the manifestation of nuclear deformation
– a collective feature of the nuclear many-body system – is the same across energy scales [11].
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FIG. 1: The cartoon of collision of nuclei with quadrupole (left), octupole (middle) and hexadecapole (right) deformations
including either the Yn,0 mode (top row) or the Yn,n mode (middle row) and with �n = 0.25. The Lorentz contraction in the
z-direction, by factor of 100 at RHIC and more than a factor of 1000 at the LHC, are not shown. The bottom row shows how
the initial condition of the QGP formed after the collision looks like in the transverse plane. The hallow arrows indicate the
direction of maximum pressure gradients along which the medium expand with largest velocity, leading to final state harmonic
flow vn with n-fold symmetry.
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The atomic nucleus comprises Z protons and N neutrons,
which are collectively called nucleons. In the α clustering
picture as illustrated in Fig. 1, the α particle (Z=N= 2)

forms a building block, and some nuclei can be composed of α
particles. In such cases, Z=N= 2i holds with i being an integer,
and the mass number A= Z+N becomes equal to 4, 8, 12, ... A
given nucleus is labeled as AX where X denotes the element, e.g.,
8Be for beryllium-8. Fig. 1b–c sketch intuitive pictures for pos-
sible α clustering in 8Be and 12C, respectively, where α particles
are shown by mid-sized circles forming nuclei represented by
green areas. Such natural pictures, collectively called the α cluster
model, have been conceived since the 1930s1–7. It is, however, still
difficult to observe the α clustering experimentally. This is basi-
cally because the nucleus is not at rest (quantum mechanically)
but we need its snapshot (see Fig. 1).

An alternative possibility is theoretical studies: quite a few
studies, for example8–16, were performed based on models or
assumptions including limiting cases like linear chains3,15, equi-
lateral triangles13, and a Bose-Einstein condensate14. More
recently ab initio calculations were reported17–20, where two α
clusters in the ground state of 8Be were suggested17 (see Fig. 1b).
The α clustering is more crucial but less clarified for the 12C
nucleus: this nucleus can be formed by three α particles in con-
figurations, triangular, linear, or other (see Fig. 1c). Its lowest
spin/parity Jπ= 0+ excited state, the infamous Hoyle state21–23, is
a critical gateway in the nucleosynthesis to the present carbon-
abundant world filled with living organisms24,25, but its structure
remains to be clarified.

We show in this work, by state-of-the-art computational
simulations without assuming α clustering a priori, that α clus-
tering indeed occurs for the ground and excited states of 8,10Be
and 12C isotopes, including the Hoyle state, in varying formation
patterns. The simulations are performed by full Configuration-
Interaction (CI) calculations from first principles on a sound
basis, and their validity is further examined for some observables
by comparing with experimental data. The revealed features are
supported by a statistical learning technique26, and present an
unexpected crossover27 between clustering and normal nuclear
matter.

Results
Multi-nucleon structure by CI simulation. The present CI cal-
culation is called the shell-model (SM) calculation in nuclear
physics. Among various types of SM calculations, the one taken in
this work belongs to Monte Carlo Shell Model (MCSM)28–31. The
MCSM has already been applied to various studies on atomic
nuclei (see examples, 32,33). The present MCSM calculation dif-
fers in that all nucleons are activated (i.e., no inert core)34,35,
implying no core-polarization (or in-medium) correction is
needed. The nucleon-nucleon (NN) interaction is fixed on a
fundamental basis prior to this work as described below, so as to
accurately describe free NN scattering36–38. The whole scheme
can then be referred to as the ab initio No-Core MCSM, which is

a state-of-the-art CI calculation for nuclei running on super-
computers such as K39 and Fugaku40.

The NN interaction we use is the JISP16 interaction36 for Be
isotopes and the Daejeon16 interaction37 for C isotopes. The
inter-nucleon potential of the JISP16 interaction was determined
so as to reproduce NN scattering data and deuteron properties. In
addition, the binding energies of light nuclei are used for fine-
tuning. No explicit three-nucleon interactions are included, but
momentum-dependent NN interaction terms produce similar
effects36. The Daejeon16 interaction is a successor of JISP16. It
has been derived from chiral effective field theory up to N3LO
terms38, and also uses a few properties of light nuclei for the fine-
tuning instead of three-nucleon forces37. Both interactions have
been fixed prior to the present simulation and retain their
excellent descriptions of the NN scattering data. For the Be
isotopes, the results of JISP16 interaction are used in this paper,
because of no notable change by Daejeon16.

In the present CI calculations, protons and neutrons are
moving in certain single-particle states, taking various configura-
tions. Their many-body structure is obtained as solutions of the
Schrödinger equation with the aforementioned NN interaction.
These single-particle states are given by eigenstates of the
harmonic-oscillator (HO) potential. We take a sufficiently large
number of such eigenstates so that a good accuracy is achieved:
the HO shells up to the 6th (5ℏω) or 7th shell (6ℏω) for Be and C
isotopes, respectively, with ℏω being the HO quantum. We note
that the present simulation employs cutting-edge supercomput-
ing: if we were to attempt the same calculation with direct matrix
diagonalization, the dimension of the vector space is as large as
1.2 × 1012 for 8Be and 1.9 × 1019 for 12C. The MCSM enables us
to solve the Schrödinger equation to a good approximation34,
without resorting to such formidable calculations. Some of the
ground-state properties obtained by the present calculation are
reported elsewhere35, and we shall here focus on the clustering.

Manifestation of α-clustering and beryllium isotopes. The
aforementioned eigensolutions provide energy eigenvalues and
wave functions. Figure 2 indicates, for 8,10,12Be, the excitation
energies, Ex(Jπ), of the states of Jπ= 2+ or 4+ on top of the
Jπ= 0+ ground state, while other excited states are omitted for
clarity. One sees a good agreement between the present CI
simulation and experiment. Because this simulation is a first-
principles calculation with no adjustable parameters, this agree-
ment deserves particular attention. Similar results were obtained
for 8Be by the Green’s Function Monte Carlo (GFMC)
calculation17,18, and for Be isotopes by the no-core CI calculation
with the JISP16 interaction41. The three isotopes in Fig. 2 com-
monly exhibit a pattern Ex(4+)/Ex(2+) ~ 3, as reproduced rather
well by the present work. This is a typical pattern of the rotational
motion of a non-spherical quantum object. A schematic image of
the rotational motion of a di-cluster formation is displayed in
Fig. 1b.
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Fig. 1 Schematic illustrations of α clustering in atomic nuclei. a 4He=α particle, b 8Be, and c 12C (three possible cases, i, ii, and iii). The green areas
represent atomic nuclei allowing some movements of α clusters.
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difficult to observe the α clustering experimentally. This is basi-
cally because the nucleus is not at rest (quantum mechanically)
but we need its snapshot (see Fig. 1).

An alternative possibility is theoretical studies: quite a few
studies, for example8–16, were performed based on models or
assumptions including limiting cases like linear chains3,15, equi-
lateral triangles13, and a Bose-Einstein condensate14. More
recently ab initio calculations were reported17–20, where two α
clusters in the ground state of 8Be were suggested17 (see Fig. 1b).
The α clustering is more crucial but less clarified for the 12C
nucleus: this nucleus can be formed by three α particles in con-
figurations, triangular, linear, or other (see Fig. 1c). Its lowest
spin/parity Jπ= 0+ excited state, the infamous Hoyle state21–23, is
a critical gateway in the nucleosynthesis to the present carbon-
abundant world filled with living organisms24,25, but its structure
remains to be clarified.

We show in this work, by state-of-the-art computational
simulations without assuming α clustering a priori, that α clus-
tering indeed occurs for the ground and excited states of 8,10Be
and 12C isotopes, including the Hoyle state, in varying formation
patterns. The simulations are performed by full Configuration-
Interaction (CI) calculations from first principles on a sound
basis, and their validity is further examined for some observables
by comparing with experimental data. The revealed features are
supported by a statistical learning technique26, and present an
unexpected crossover27 between clustering and normal nuclear
matter.

Results
Multi-nucleon structure by CI simulation. The present CI cal-
culation is called the shell-model (SM) calculation in nuclear
physics. Among various types of SM calculations, the one taken in
this work belongs to Monte Carlo Shell Model (MCSM)28–31. The
MCSM has already been applied to various studies on atomic
nuclei (see examples, 32,33). The present MCSM calculation dif-
fers in that all nucleons are activated (i.e., no inert core)34,35,
implying no core-polarization (or in-medium) correction is
needed. The nucleon-nucleon (NN) interaction is fixed on a
fundamental basis prior to this work as described below, so as to
accurately describe free NN scattering36–38. The whole scheme
can then be referred to as the ab initio No-Core MCSM, which is

a state-of-the-art CI calculation for nuclei running on super-
computers such as K39 and Fugaku40.

The NN interaction we use is the JISP16 interaction36 for Be
isotopes and the Daejeon16 interaction37 for C isotopes. The
inter-nucleon potential of the JISP16 interaction was determined
so as to reproduce NN scattering data and deuteron properties. In
addition, the binding energies of light nuclei are used for fine-
tuning. No explicit three-nucleon interactions are included, but
momentum-dependent NN interaction terms produce similar
effects36. The Daejeon16 interaction is a successor of JISP16. It
has been derived from chiral effective field theory up to N3LO
terms38, and also uses a few properties of light nuclei for the fine-
tuning instead of three-nucleon forces37. Both interactions have
been fixed prior to the present simulation and retain their
excellent descriptions of the NN scattering data. For the Be
isotopes, the results of JISP16 interaction are used in this paper,
because of no notable change by Daejeon16.

In the present CI calculations, protons and neutrons are
moving in certain single-particle states, taking various configura-
tions. Their many-body structure is obtained as solutions of the
Schrödinger equation with the aforementioned NN interaction.
These single-particle states are given by eigenstates of the
harmonic-oscillator (HO) potential. We take a sufficiently large
number of such eigenstates so that a good accuracy is achieved:
the HO shells up to the 6th (5ℏω) or 7th shell (6ℏω) for Be and C
isotopes, respectively, with ℏω being the HO quantum. We note
that the present simulation employs cutting-edge supercomput-
ing: if we were to attempt the same calculation with direct matrix
diagonalization, the dimension of the vector space is as large as
1.2 × 1012 for 8Be and 1.9 × 1019 for 12C. The MCSM enables us
to solve the Schrödinger equation to a good approximation34,
without resorting to such formidable calculations. Some of the
ground-state properties obtained by the present calculation are
reported elsewhere35, and we shall here focus on the clustering.

Manifestation of α-clustering and beryllium isotopes. The
aforementioned eigensolutions provide energy eigenvalues and
wave functions. Figure 2 indicates, for 8,10,12Be, the excitation
energies, Ex(Jπ), of the states of Jπ= 2+ or 4+ on top of the
Jπ= 0+ ground state, while other excited states are omitted for
clarity. One sees a good agreement between the present CI
simulation and experiment. Because this simulation is a first-
principles calculation with no adjustable parameters, this agree-
ment deserves particular attention. Similar results were obtained
for 8Be by the Green’s Function Monte Carlo (GFMC)
calculation17,18, and for Be isotopes by the no-core CI calculation
with the JISP16 interaction41. The three isotopes in Fig. 2 com-
monly exhibit a pattern Ex(4+)/Ex(2+) ~ 3, as reproduced rather
well by the present work. This is a typical pattern of the rotational
motion of a non-spherical quantum object. A schematic image of
the rotational motion of a di-cluster formation is displayed in
Fig. 1b.
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v Motivation 
Ø The rich structure of atomic nuclei:

ü Clustering, halo, skin …
ü Quadrupole/octupole/hexdecopole deformations



The shape of the nucleus in nuclear physics is often modeled with a nucleon 
density profile of the Woods-Saxon 𝜌 𝑟, 𝜃, 𝜙 .

𝑅 𝜃, 𝜙 = 𝑅! 1 +	𝛽"𝑌",!(𝜃, 𝜙) +	𝛽$𝑌$,!(𝜃, 𝜙) + 𝛽%𝑌%,!(𝜃, 𝜙)

Ø𝑌!,# are spherical harmonics 

Ø𝛽! are deformation parameters
ü n=2 -> Quadrupole 
ü n=3 -> Octupole
ü n=4 -> Hexadecapole

7

𝜌 𝑟, 𝜃, 𝜙 =
𝜌!

1 + 𝑒['	)*(,,-)/0!]

v Motivation 

1 +	𝛽!𝑌!,# 1 +	𝛽$𝑌$,# 1 +	𝛽%𝑌%,#

2

I. INTRODUCTION

Most of the atomic nuclei in their ground state are deformed from a well defined spherical shape. The deformation
has non-trivial dependence on the proton and neutron number, especially in the vicinity of full shell or subshell,
reflecting collective motion induced by interaction between valence nucleons and shell structure [1]. The collective
motion leads to characteristic rotational spectra of nuclear excited state, where the electric multi-pole transition
probability B(En) between low-lying rotational states with n�h di↵erence in angular momentum can be used to infer
the shape parameters. Past e↵orts have led to the discovery of a rich variety of phenomena, such as quadrupole
deformation, shape evolution, triaxiality/shape coexistence, octupole deformation, hexadecapole deformation and
other exotic shapes [2–6].

No-one has directly observed the deformed nucleus, however. This is because the nucleus is deformed in the so-
called intrinsic (body-fixed) frame, and its wave function in the laboratory frame actually does not pick a particular
direction. The typical scattering experiments probe the nuclear form factors averaged over all orientations, and the
static deformation appears mostly as an increased surface thickness [7]. On the other hand, high-energy heavy ion
collisions at RHIC and the LHC, as illustrated in Fig. 1, can image the shape of the nucleus by colliding them together
and looking at the collective expansion of the produced system responding to the geometry of the overlap. In these
collisions, two Lorentz-contracted nuclei, by a factor of 100 at RHIC and more than a factor of 1000 at the LHC, cross
each other over a time scale ⌧ < 0.1fm/c ≈ 3 × 10−24s, forming a hot and dense quark-gluon plasma (QGP) [8] in the
overlap region, whose initial shape is correlated with the deformed shape of the nuclei. Driven by the large pressure
gradient forces, the QGP expands hydrodynamically, converting the spatial anisotropies into azimuthal anisotropies
of final-state particles in the momentum space [9]. Nuclear shape imaging is possible because each collision probes
simultaneously the entire mass distribution of the nuclei, and one can use particle correlations among thousands of
produced particles to infer the two-point and multi-point correlations of this mass distribution and hence its spatial
shape. Since the time scales involved in these collisions are much shorter (< 10−24s) than the typical timescale of the
rotational bands (10−21s [10]), this raises an important question of whether the manifestation of nuclear deformation
– a collective feature of the nuclear many-body system – is the same across energy scales [11].
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FIG. 1: The cartoon of collision of nuclei with quadrupole (left), octupole (middle) and hexadecapole (right) deformations
including either the Yn,0 mode (top row) or the Yn,n mode (middle row) and with �n = 0.25. The Lorentz contraction in the
z-direction, by factor of 100 at RHIC and more than a factor of 1000 at the LHC, are not shown. The bottom row shows how
the initial condition of the QGP formed after the collision looks like in the transverse plane. The hallow arrows indicate the
direction of maximum pressure gradients along which the medium expand with largest velocity, leading to final state harmonic
flow vn with n-fold symmetry.
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FIG. 1: The cartoon of collision of nuclei with quadrupole (left), octupole (middle) and hexadecapole (right) deformations
including either the Yn,0 mode (top row) or the Yn,n mode (middle row) and with �n = 0.25. The Lorentz contraction in the
z-direction, by factor of 100 at RHIC and more than a factor of 1000 at the LHC, are not shown. The bottom row shows how
the initial condition of the QGP formed after the collision looks like in the transverse plane. The hallow arrows indicate the
direction of maximum pressure gradients along which the medium expand with largest velocity, leading to final state harmonic
flow vn with n-fold symmetry.
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v Motivation 
In heavy ion collisions; 

J. Jia
Phys. Rev. C 105 (2022) 1, 014905
J. Jia et al.
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TABLE I: The value of eccentricity generated by the deformation component Yn,0 (first row) and Yn,n (second row) for the
special alignment of two colliding nuclei similar to those shown in Fig. 1 which maximizes the eccentricity values, obtained
within an optical Glauber model with sharp surface by setting a0 = 0 in Eq. (1). Here only the leading and subleading
order contributions are included. The leading-order mean square values �"2n� obtained by averaging over common random
orientations for the two nuclei and independent random orientations for the two nuclei are given in the third row and the last
row, respectively. The values in the latter case are a factor of two smaller, but in both cases they are independent of �, ↵3,m

or ↵4,m.

time, the latter is useful to understand the influence of departure from axial and/or reflection symmetry. A special
study is performed to also investigate the presence of shapes of di↵erent n, where two or three non-zero values for �2,
�3 and �4 are enabled simultanously.

It is well known that the particle production in nucleus-nucleus collisions only scales approximately with Npart.
A better scaling can be achieved by considering the constituent quarks as e↵ective degree-of-freedom for particle
production [39–43], which would naturally give rise to di↵erent "n in each event. Defining centrality with constituent
quarks is also expected to change the fluctuations of eccentricity [44], and provide a way to quantify the centrality
smearing e↵ects. For this purpose, a quark Glauber model from Ref. [41] is used. Three quark constituents are
generated for each nucleon according to the “mod” configuration [45], which ensures that the radial distribution of
the three constituents after re-centering follows the proton form factor ⇢proton(r) = e−r�r0 with r0 = 0.234 fm [46]. The
value of quark-quark cross-section is chosen to be �qq = 8.2 mb in order to match the �nn. The "n are then calculated
from the list of quark participants in the overlap region, and the number of quark participants Nquark is used as an
alternative centrality estimator. In the quark Glauber model, I also keep track explicitly the participant nucleons, i.e.
a nucleon is counted as participant as long as one of its quark participate in the collision. This paper presents and
compares results obtained from both nucleon participants and quark participants.

In the presence of large deformation, the total volume of the nucleus increases slightly for fixed R0 [47]. Considering
the quadrupole deformation only, for the largest value considered, �2 = 0.34, the ratio to the original volume is

approximately 1+ 3
4⇡�

2
2 + √

5
28⇡3�2 cos(3�)�3

2 = 1.021+0.0004 cos(3�). In order to keep the overall volume fixed, it would
require a small less than 1% decrease of the R0, which is safely ignored in the present study.

III. RESULTS

The goal of this paper is to explore the relation between �"2n� and various deformation parameters in Eq. (1), and to

provide insights on the deformation dependence of experimentally measured �v2n�. The influence of nuclear deformation
on higher-order cumulants of "n will be explored in a separate study. Section IIIA establishes the quadratic relation
Eq. (3) by considering the axial-symmetric deformation Yn,0, n = 2,3 and 4. The influences of non-axial deformation,
Yn,m≠0, characterized by the triaxiality parameter � and ↵n,m parameters are considered in Section III B. One finds
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a nucleon is counted as participant as long as one of its quark participate in the collision. This paper presents and
compares results obtained from both nucleon participants and quark participants.

In the presence of large deformation, the total volume of the nucleus increases slightly for fixed R0 [47]. Considering
the quadrupole deformation only, for the largest value considered, �2 = 0.34, the ratio to the original volume is

approximately 1+ 3
4⇡�

2
2 + √

5
28⇡3�2 cos(3�)�3

2 = 1.021+0.0004 cos(3�). In order to keep the overall volume fixed, it would
require a small less than 1% decrease of the R0, which is safely ignored in the present study.

III. RESULTS

The goal of this paper is to explore the relation between �"2n� and various deformation parameters in Eq. (1), and to

provide insights on the deformation dependence of experimentally measured �v2n�. The influence of nuclear deformation
on higher-order cumulants of "n will be explored in a separate study. Section IIIA establishes the quadratic relation
Eq. (3) by considering the axial-symmetric deformation Yn,0, n = 2,3 and 4. The influences of non-axial deformation,
Yn,m≠0, characterized by the triaxiality parameter � and ↵n,m parameters are considered in Section III B. One finds
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FIG. 3. The STAR v2 (a) and v3 (b) data from isobar colli-
sions using three analysis methods from Ref. [1]. The ratios
Rv2(c) (c) and Rv3(c) (d) are calculated at matching central-
ity directly with the vn data from the top panels. The ratios
Rv2(Nch) (e) and Rv3(Nch) (f) are calculated at matching
Nch using Eq. (2) with data from Fig. 2 as described in the
text.

calculated Rvn(c) ratios are presented as a function of
centrality in the middle panels. The bottom panels show
the Rvn(Nch) ratios taken at Nch,Ru for each central-
ity bin using Eq. (2) with data from Fig. 2. In general,
Rv2(Nch) is larger than Rv2(c), since v2 increases with
c, yielding a positive ln′(v2(c)). In contrast, Rv3(Nch) is
nearly the same as Rv3(c), as expected from the weak
centrality dependence of v3. In peripheral collisions,
where v2 and v3 are highly a↵ected by nonflow e↵ects, the
ratios are method-dependent as expected. Remarkably,
the Rvn(Nch) ratios from di↵erent methods are much
closer to each other than the case of Rvn(c). This sug-
gests that nonflow e↵ects in the two isobaric systems are
controlled by Nch instead of centrality. In other words,
nonflow contributions in Ru+Ru and Zr+Zr collisions are
almost the same at matching Nch, and hence are di↵erent
at matching centrality. 1

Next, we estimate the impact of the WS parameters on
the isobar ratio in the AMPT model using Fig. 2 as input.
We select the results whose methods have smaller non-
flow, i.e. v2{TPC −EPD} and v3{��⌘� > 1}, and present

1
In this scenario, the remaining di↵erences in Rvn(Nch) between
the analysis methods could be attributed to the dilution e↵ects

associated with the di↵erent amounts of nonflow e↵ects in those

methods. However, the STAR measurements need to be repeated

with much finer centrality bins, such that Eq. (2) can provide a

more accurate estimate.

them in Fig. 4. The model calculations are compared
with the �Rvn values estimated from the STAR data,
which are just the di↵erences between the open diamonds
in the bottom panels and the solid diamonds in the mid-
dle panels of Fig. 3. As expected, a0 plays a leading role
in the di↵erence, followed byR0, and then �3 and �2. The
calculated �Rvn after considering all the nuclear struc-
ture e↵ects (open boxes) are similar to the data (solid
diamonds) for c < 0.2, but are smaller in magnitude else-
where.
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FIG. 4. The di↵erence between the ratio at matching Nch

and the ratio at matching centrality: �Rv2 (a) and �Rv3

(b), calculated using p(Nch) from the STAR data [1] as well
as AMPT including the e↵ects of WS parameters in Eq. (1).

Figure 5 shows the STAR data of the CME sensitive
observables: �� (a), ��112 (b) and 112 ≡��112�(v2��)
(c). The middle row presents the ratios of Ru+Ru
to Zr+Zr for the corresponding observables at match-
ing c and at matching Nch. In the latter case, we
have also tried an alternative approach by modifying
Eq. (2) to a second-order polynomial interpolation, de-
termined by every three adjacent points (labelled as ”es-
timate2”). The results from the two interpolation meth-
ods are nearly identical in central collisions, but show
some deviations elsewhere. To improve the accuracy of
our estimate, STAR measurements need to be repeated
with much finer centrality bins in the future. For most
centrality intervals under study, both the �� ratios and
the ��112 ratios change from below unity to above unity
after switching from matching c to matching Nch. Such
qualitative changes reveal the importance of choosing the
proper event activity variable, as this choice may strongly
a↵ect the perception of whether/how R deviates from
unity, and whether it is attributable to the genuine CME
e↵ects. In general, the 112 ratios at matching Nch are
consistent with unity, whereas those at matching c are
significantly below unity, suggesting that the non-CME
backgrounds in the two systems are better controlled by
Nch than c. The bottom panels show that the e↵ects of
switching the event activity variable tend to be larger in
more peripheral collisions, and are dominated by a0.
The last set of observables to be studied in this pa-

per are �pT� and its fluctuations in terms of scaled-
variance, �pT� �pT�. To estimate �RO for these observ-
ables, we need to express them as a function of Nch

(Eq.(3)). Here we assume that the multiplicity depen-
dence of either observable in isobar collisions is similar to



Ø What can we learn about the nuclear shape and structure (α clustering)? 
v Motivation 

ü Can α particles be the building blocks of some nuclei?
ü  Has direct experimental evidence ever been provided?

The atomic nucleus comprises Z protons and N neutrons,
which are collectively called nucleons. In the α clustering
picture as illustrated in Fig. 1, the α particle (Z=N= 2)

forms a building block, and some nuclei can be composed of α
particles. In such cases, Z=N= 2i holds with i being an integer,
and the mass number A= Z+N becomes equal to 4, 8, 12, ... A
given nucleus is labeled as AX where X denotes the element, e.g.,
8Be for beryllium-8. Fig. 1b–c sketch intuitive pictures for pos-
sible α clustering in 8Be and 12C, respectively, where α particles
are shown by mid-sized circles forming nuclei represented by
green areas. Such natural pictures, collectively called the α cluster
model, have been conceived since the 1930s1–7. It is, however, still
difficult to observe the α clustering experimentally. This is basi-
cally because the nucleus is not at rest (quantum mechanically)
but we need its snapshot (see Fig. 1).

An alternative possibility is theoretical studies: quite a few
studies, for example8–16, were performed based on models or
assumptions including limiting cases like linear chains3,15, equi-
lateral triangles13, and a Bose-Einstein condensate14. More
recently ab initio calculations were reported17–20, where two α
clusters in the ground state of 8Be were suggested17 (see Fig. 1b).
The α clustering is more crucial but less clarified for the 12C
nucleus: this nucleus can be formed by three α particles in con-
figurations, triangular, linear, or other (see Fig. 1c). Its lowest
spin/parity Jπ= 0+ excited state, the infamous Hoyle state21–23, is
a critical gateway in the nucleosynthesis to the present carbon-
abundant world filled with living organisms24,25, but its structure
remains to be clarified.

We show in this work, by state-of-the-art computational
simulations without assuming α clustering a priori, that α clus-
tering indeed occurs for the ground and excited states of 8,10Be
and 12C isotopes, including the Hoyle state, in varying formation
patterns. The simulations are performed by full Configuration-
Interaction (CI) calculations from first principles on a sound
basis, and their validity is further examined for some observables
by comparing with experimental data. The revealed features are
supported by a statistical learning technique26, and present an
unexpected crossover27 between clustering and normal nuclear
matter.

Results
Multi-nucleon structure by CI simulation. The present CI cal-
culation is called the shell-model (SM) calculation in nuclear
physics. Among various types of SM calculations, the one taken in
this work belongs to Monte Carlo Shell Model (MCSM)28–31. The
MCSM has already been applied to various studies on atomic
nuclei (see examples, 32,33). The present MCSM calculation dif-
fers in that all nucleons are activated (i.e., no inert core)34,35,
implying no core-polarization (or in-medium) correction is
needed. The nucleon-nucleon (NN) interaction is fixed on a
fundamental basis prior to this work as described below, so as to
accurately describe free NN scattering36–38. The whole scheme
can then be referred to as the ab initio No-Core MCSM, which is

a state-of-the-art CI calculation for nuclei running on super-
computers such as K39 and Fugaku40.

The NN interaction we use is the JISP16 interaction36 for Be
isotopes and the Daejeon16 interaction37 for C isotopes. The
inter-nucleon potential of the JISP16 interaction was determined
so as to reproduce NN scattering data and deuteron properties. In
addition, the binding energies of light nuclei are used for fine-
tuning. No explicit three-nucleon interactions are included, but
momentum-dependent NN interaction terms produce similar
effects36. The Daejeon16 interaction is a successor of JISP16. It
has been derived from chiral effective field theory up to N3LO
terms38, and also uses a few properties of light nuclei for the fine-
tuning instead of three-nucleon forces37. Both interactions have
been fixed prior to the present simulation and retain their
excellent descriptions of the NN scattering data. For the Be
isotopes, the results of JISP16 interaction are used in this paper,
because of no notable change by Daejeon16.

In the present CI calculations, protons and neutrons are
moving in certain single-particle states, taking various configura-
tions. Their many-body structure is obtained as solutions of the
Schrödinger equation with the aforementioned NN interaction.
These single-particle states are given by eigenstates of the
harmonic-oscillator (HO) potential. We take a sufficiently large
number of such eigenstates so that a good accuracy is achieved:
the HO shells up to the 6th (5ℏω) or 7th shell (6ℏω) for Be and C
isotopes, respectively, with ℏω being the HO quantum. We note
that the present simulation employs cutting-edge supercomput-
ing: if we were to attempt the same calculation with direct matrix
diagonalization, the dimension of the vector space is as large as
1.2 × 1012 for 8Be and 1.9 × 1019 for 12C. The MCSM enables us
to solve the Schrödinger equation to a good approximation34,
without resorting to such formidable calculations. Some of the
ground-state properties obtained by the present calculation are
reported elsewhere35, and we shall here focus on the clustering.

Manifestation of α-clustering and beryllium isotopes. The
aforementioned eigensolutions provide energy eigenvalues and
wave functions. Figure 2 indicates, for 8,10,12Be, the excitation
energies, Ex(Jπ), of the states of Jπ= 2+ or 4+ on top of the
Jπ= 0+ ground state, while other excited states are omitted for
clarity. One sees a good agreement between the present CI
simulation and experiment. Because this simulation is a first-
principles calculation with no adjustable parameters, this agree-
ment deserves particular attention. Similar results were obtained
for 8Be by the Green’s Function Monte Carlo (GFMC)
calculation17,18, and for Be isotopes by the no-core CI calculation
with the JISP16 interaction41. The three isotopes in Fig. 2 com-
monly exhibit a pattern Ex(4+)/Ex(2+) ~ 3, as reproduced rather
well by the present work. This is a typical pattern of the rotational
motion of a non-spherical quantum object. A schematic image of
the rotational motion of a di-cluster formation is displayed in
Fig. 1b.
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Fig. 1 Schematic illustrations of α clustering in atomic nuclei. a 4He=α particle, b 8Be, and c 12C (three possible cases, i, ii, and iii). The green areas
represent atomic nuclei allowing some movements of α clusters.
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v Motivation 
In heavy-ion collisions; 

Clustering in heavy-ion collisions is too 
complicated to be measured. 

Phys.Rev.C 104 (2021) 4, L041901

Ø No difference was observed between 
Woods-Saxon and α clustering
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I. INTRODUCTION

Most of the atomic nuclei in their ground state are deformed from a well defined spherical shape. The deformation
has non-trivial dependence on the proton and neutron number, especially in the vicinity of full shell or subshell,
reflecting collective motion induced by interaction between valence nucleons and shell structure [1]. The collective
motion leads to characteristic rotational spectra of nuclear excited state, where the electric multi-pole transition
probability B(En) between low-lying rotational states with n�h di↵erence in angular momentum can be used to infer
the shape parameters. Past e↵orts have led to the discovery of a rich variety of phenomena, such as quadrupole
deformation, shape evolution, triaxiality/shape coexistence, octupole deformation, hexadecapole deformation and
other exotic shapes [2–6].

No-one has directly observed the deformed nucleus, however. This is because the nucleus is deformed in the so-
called intrinsic (body-fixed) frame, and its wave function in the laboratory frame actually does not pick a particular
direction. The typical scattering experiments probe the nuclear form factors averaged over all orientations, and the
static deformation appears mostly as an increased surface thickness [7]. On the other hand, high-energy heavy ion
collisions at RHIC and the LHC, as illustrated in Fig. 1, can image the shape of the nucleus by colliding them together
and looking at the collective expansion of the produced system responding to the geometry of the overlap. In these
collisions, two Lorentz-contracted nuclei, by a factor of 100 at RHIC and more than a factor of 1000 at the LHC, cross
each other over a time scale ⌧ < 0.1fm/c ≈ 3 × 10−24s, forming a hot and dense quark-gluon plasma (QGP) [8] in the
overlap region, whose initial shape is correlated with the deformed shape of the nuclei. Driven by the large pressure
gradient forces, the QGP expands hydrodynamically, converting the spatial anisotropies into azimuthal anisotropies
of final-state particles in the momentum space [9]. Nuclear shape imaging is possible because each collision probes
simultaneously the entire mass distribution of the nuclei, and one can use particle correlations among thousands of
produced particles to infer the two-point and multi-point correlations of this mass distribution and hence its spatial
shape. Since the time scales involved in these collisions are much shorter (< 10−24s) than the typical timescale of the
rotational bands (10−21s [10]), this raises an important question of whether the manifestation of nuclear deformation
– a collective feature of the nuclear many-body system – is the same across energy scales [11].
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FIG. 1: The cartoon of collision of nuclei with quadrupole (left), octupole (middle) and hexadecapole (right) deformations
including either the Yn,0 mode (top row) or the Yn,n mode (middle row) and with �n = 0.25. The Lorentz contraction in the
z-direction, by factor of 100 at RHIC and more than a factor of 1000 at the LHC, are not shown. The bottom row shows how
the initial condition of the QGP formed after the collision looks like in the transverse plane. The hallow arrows indicate the
direction of maximum pressure gradients along which the medium expand with largest velocity, leading to final state harmonic
flow vn with n-fold symmetry.
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ØEIC can be a unique tool for understanding the nuclear structure

The atomic nucleus comprises Z protons and N neutrons,
which are collectively called nucleons. In the α clustering
picture as illustrated in Fig. 1, the α particle (Z=N= 2)

forms a building block, and some nuclei can be composed of α
particles. In such cases, Z=N= 2i holds with i being an integer,
and the mass number A= Z+N becomes equal to 4, 8, 12, ... A
given nucleus is labeled as AX where X denotes the element, e.g.,
8Be for beryllium-8. Fig. 1b–c sketch intuitive pictures for pos-
sible α clustering in 8Be and 12C, respectively, where α particles
are shown by mid-sized circles forming nuclei represented by
green areas. Such natural pictures, collectively called the α cluster
model, have been conceived since the 1930s1–7. It is, however, still
difficult to observe the α clustering experimentally. This is basi-
cally because the nucleus is not at rest (quantum mechanically)
but we need its snapshot (see Fig. 1).

An alternative possibility is theoretical studies: quite a few
studies, for example8–16, were performed based on models or
assumptions including limiting cases like linear chains3,15, equi-
lateral triangles13, and a Bose-Einstein condensate14. More
recently ab initio calculations were reported17–20, where two α
clusters in the ground state of 8Be were suggested17 (see Fig. 1b).
The α clustering is more crucial but less clarified for the 12C
nucleus: this nucleus can be formed by three α particles in con-
figurations, triangular, linear, or other (see Fig. 1c). Its lowest
spin/parity Jπ= 0+ excited state, the infamous Hoyle state21–23, is
a critical gateway in the nucleosynthesis to the present carbon-
abundant world filled with living organisms24,25, but its structure
remains to be clarified.

We show in this work, by state-of-the-art computational
simulations without assuming α clustering a priori, that α clus-
tering indeed occurs for the ground and excited states of 8,10Be
and 12C isotopes, including the Hoyle state, in varying formation
patterns. The simulations are performed by full Configuration-
Interaction (CI) calculations from first principles on a sound
basis, and their validity is further examined for some observables
by comparing with experimental data. The revealed features are
supported by a statistical learning technique26, and present an
unexpected crossover27 between clustering and normal nuclear
matter.

Results
Multi-nucleon structure by CI simulation. The present CI cal-
culation is called the shell-model (SM) calculation in nuclear
physics. Among various types of SM calculations, the one taken in
this work belongs to Monte Carlo Shell Model (MCSM)28–31. The
MCSM has already been applied to various studies on atomic
nuclei (see examples, 32,33). The present MCSM calculation dif-
fers in that all nucleons are activated (i.e., no inert core)34,35,
implying no core-polarization (or in-medium) correction is
needed. The nucleon-nucleon (NN) interaction is fixed on a
fundamental basis prior to this work as described below, so as to
accurately describe free NN scattering36–38. The whole scheme
can then be referred to as the ab initio No-Core MCSM, which is

a state-of-the-art CI calculation for nuclei running on super-
computers such as K39 and Fugaku40.

The NN interaction we use is the JISP16 interaction36 for Be
isotopes and the Daejeon16 interaction37 for C isotopes. The
inter-nucleon potential of the JISP16 interaction was determined
so as to reproduce NN scattering data and deuteron properties. In
addition, the binding energies of light nuclei are used for fine-
tuning. No explicit three-nucleon interactions are included, but
momentum-dependent NN interaction terms produce similar
effects36. The Daejeon16 interaction is a successor of JISP16. It
has been derived from chiral effective field theory up to N3LO
terms38, and also uses a few properties of light nuclei for the fine-
tuning instead of three-nucleon forces37. Both interactions have
been fixed prior to the present simulation and retain their
excellent descriptions of the NN scattering data. For the Be
isotopes, the results of JISP16 interaction are used in this paper,
because of no notable change by Daejeon16.

In the present CI calculations, protons and neutrons are
moving in certain single-particle states, taking various configura-
tions. Their many-body structure is obtained as solutions of the
Schrödinger equation with the aforementioned NN interaction.
These single-particle states are given by eigenstates of the
harmonic-oscillator (HO) potential. We take a sufficiently large
number of such eigenstates so that a good accuracy is achieved:
the HO shells up to the 6th (5ℏω) or 7th shell (6ℏω) for Be and C
isotopes, respectively, with ℏω being the HO quantum. We note
that the present simulation employs cutting-edge supercomput-
ing: if we were to attempt the same calculation with direct matrix
diagonalization, the dimension of the vector space is as large as
1.2 × 1012 for 8Be and 1.9 × 1019 for 12C. The MCSM enables us
to solve the Schrödinger equation to a good approximation34,
without resorting to such formidable calculations. Some of the
ground-state properties obtained by the present calculation are
reported elsewhere35, and we shall here focus on the clustering.

Manifestation of α-clustering and beryllium isotopes. The
aforementioned eigensolutions provide energy eigenvalues and
wave functions. Figure 2 indicates, for 8,10,12Be, the excitation
energies, Ex(Jπ), of the states of Jπ= 2+ or 4+ on top of the
Jπ= 0+ ground state, while other excited states are omitted for
clarity. One sees a good agreement between the present CI
simulation and experiment. Because this simulation is a first-
principles calculation with no adjustable parameters, this agree-
ment deserves particular attention. Similar results were obtained
for 8Be by the Green’s Function Monte Carlo (GFMC)
calculation17,18, and for Be isotopes by the no-core CI calculation
with the JISP16 interaction41. The three isotopes in Fig. 2 com-
monly exhibit a pattern Ex(4+)/Ex(2+) ~ 3, as reproduced rather
well by the present work. This is a typical pattern of the rotational
motion of a non-spherical quantum object. A schematic image of
the rotational motion of a di-cluster formation is displayed in
Fig. 1b.
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Fig. 1 Schematic illustrations of α clustering in atomic nuclei. a 4He=α particle, b 8Be, and c 12C (three possible cases, i, ii, and iii). The green areas
represent atomic nuclei allowing some movements of α clusters.
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The atomic nucleus comprises Z protons and N neutrons,
which are collectively called nucleons. In the α clustering
picture as illustrated in Fig. 1, the α particle (Z=N= 2)

forms a building block, and some nuclei can be composed of α
particles. In such cases, Z=N= 2i holds with i being an integer,
and the mass number A= Z+N becomes equal to 4, 8, 12, ... A
given nucleus is labeled as AX where X denotes the element, e.g.,
8Be for beryllium-8. Fig. 1b–c sketch intuitive pictures for pos-
sible α clustering in 8Be and 12C, respectively, where α particles
are shown by mid-sized circles forming nuclei represented by
green areas. Such natural pictures, collectively called the α cluster
model, have been conceived since the 1930s1–7. It is, however, still
difficult to observe the α clustering experimentally. This is basi-
cally because the nucleus is not at rest (quantum mechanically)
but we need its snapshot (see Fig. 1).

An alternative possibility is theoretical studies: quite a few
studies, for example8–16, were performed based on models or
assumptions including limiting cases like linear chains3,15, equi-
lateral triangles13, and a Bose-Einstein condensate14. More
recently ab initio calculations were reported17–20, where two α
clusters in the ground state of 8Be were suggested17 (see Fig. 1b).
The α clustering is more crucial but less clarified for the 12C
nucleus: this nucleus can be formed by three α particles in con-
figurations, triangular, linear, or other (see Fig. 1c). Its lowest
spin/parity Jπ= 0+ excited state, the infamous Hoyle state21–23, is
a critical gateway in the nucleosynthesis to the present carbon-
abundant world filled with living organisms24,25, but its structure
remains to be clarified.

We show in this work, by state-of-the-art computational
simulations without assuming α clustering a priori, that α clus-
tering indeed occurs for the ground and excited states of 8,10Be
and 12C isotopes, including the Hoyle state, in varying formation
patterns. The simulations are performed by full Configuration-
Interaction (CI) calculations from first principles on a sound
basis, and their validity is further examined for some observables
by comparing with experimental data. The revealed features are
supported by a statistical learning technique26, and present an
unexpected crossover27 between clustering and normal nuclear
matter.

Results
Multi-nucleon structure by CI simulation. The present CI cal-
culation is called the shell-model (SM) calculation in nuclear
physics. Among various types of SM calculations, the one taken in
this work belongs to Monte Carlo Shell Model (MCSM)28–31. The
MCSM has already been applied to various studies on atomic
nuclei (see examples, 32,33). The present MCSM calculation dif-
fers in that all nucleons are activated (i.e., no inert core)34,35,
implying no core-polarization (or in-medium) correction is
needed. The nucleon-nucleon (NN) interaction is fixed on a
fundamental basis prior to this work as described below, so as to
accurately describe free NN scattering36–38. The whole scheme
can then be referred to as the ab initio No-Core MCSM, which is

a state-of-the-art CI calculation for nuclei running on super-
computers such as K39 and Fugaku40.

The NN interaction we use is the JISP16 interaction36 for Be
isotopes and the Daejeon16 interaction37 for C isotopes. The
inter-nucleon potential of the JISP16 interaction was determined
so as to reproduce NN scattering data and deuteron properties. In
addition, the binding energies of light nuclei are used for fine-
tuning. No explicit three-nucleon interactions are included, but
momentum-dependent NN interaction terms produce similar
effects36. The Daejeon16 interaction is a successor of JISP16. It
has been derived from chiral effective field theory up to N3LO
terms38, and also uses a few properties of light nuclei for the fine-
tuning instead of three-nucleon forces37. Both interactions have
been fixed prior to the present simulation and retain their
excellent descriptions of the NN scattering data. For the Be
isotopes, the results of JISP16 interaction are used in this paper,
because of no notable change by Daejeon16.

In the present CI calculations, protons and neutrons are
moving in certain single-particle states, taking various configura-
tions. Their many-body structure is obtained as solutions of the
Schrödinger equation with the aforementioned NN interaction.
These single-particle states are given by eigenstates of the
harmonic-oscillator (HO) potential. We take a sufficiently large
number of such eigenstates so that a good accuracy is achieved:
the HO shells up to the 6th (5ℏω) or 7th shell (6ℏω) for Be and C
isotopes, respectively, with ℏω being the HO quantum. We note
that the present simulation employs cutting-edge supercomput-
ing: if we were to attempt the same calculation with direct matrix
diagonalization, the dimension of the vector space is as large as
1.2 × 1012 for 8Be and 1.9 × 1019 for 12C. The MCSM enables us
to solve the Schrödinger equation to a good approximation34,
without resorting to such formidable calculations. Some of the
ground-state properties obtained by the present calculation are
reported elsewhere35, and we shall here focus on the clustering.

Manifestation of α-clustering and beryllium isotopes. The
aforementioned eigensolutions provide energy eigenvalues and
wave functions. Figure 2 indicates, for 8,10,12Be, the excitation
energies, Ex(Jπ), of the states of Jπ= 2+ or 4+ on top of the
Jπ= 0+ ground state, while other excited states are omitted for
clarity. One sees a good agreement between the present CI
simulation and experiment. Because this simulation is a first-
principles calculation with no adjustable parameters, this agree-
ment deserves particular attention. Similar results were obtained
for 8Be by the Green’s Function Monte Carlo (GFMC)
calculation17,18, and for Be isotopes by the no-core CI calculation
with the JISP16 interaction41. The three isotopes in Fig. 2 com-
monly exhibit a pattern Ex(4+)/Ex(2+) ~ 3, as reproduced rather
well by the present work. This is a typical pattern of the rotational
motion of a non-spherical quantum object. A schematic image of
the rotational motion of a di-cluster formation is displayed in
Fig. 1b.
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Fig. 1 Schematic illustrations of α clustering in atomic nuclei. a 4He=α particle, b 8Be, and c 12C (three possible cases, i, ii, and iii). The green areas
represent atomic nuclei allowing some movements of α clusters.
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The atomic nucleus comprises Z protons and N neutrons,
which are collectively called nucleons. In the α clustering
picture as illustrated in Fig. 1, the α particle (Z=N= 2)

forms a building block, and some nuclei can be composed of α
particles. In such cases, Z=N= 2i holds with i being an integer,
and the mass number A= Z+N becomes equal to 4, 8, 12, ... A
given nucleus is labeled as AX where X denotes the element, e.g.,
8Be for beryllium-8. Fig. 1b–c sketch intuitive pictures for pos-
sible α clustering in 8Be and 12C, respectively, where α particles
are shown by mid-sized circles forming nuclei represented by
green areas. Such natural pictures, collectively called the α cluster
model, have been conceived since the 1930s1–7. It is, however, still
difficult to observe the α clustering experimentally. This is basi-
cally because the nucleus is not at rest (quantum mechanically)
but we need its snapshot (see Fig. 1).

An alternative possibility is theoretical studies: quite a few
studies, for example8–16, were performed based on models or
assumptions including limiting cases like linear chains3,15, equi-
lateral triangles13, and a Bose-Einstein condensate14. More
recently ab initio calculations were reported17–20, where two α
clusters in the ground state of 8Be were suggested17 (see Fig. 1b).
The α clustering is more crucial but less clarified for the 12C
nucleus: this nucleus can be formed by three α particles in con-
figurations, triangular, linear, or other (see Fig. 1c). Its lowest
spin/parity Jπ= 0+ excited state, the infamous Hoyle state21–23, is
a critical gateway in the nucleosynthesis to the present carbon-
abundant world filled with living organisms24,25, but its structure
remains to be clarified.

We show in this work, by state-of-the-art computational
simulations without assuming α clustering a priori, that α clus-
tering indeed occurs for the ground and excited states of 8,10Be
and 12C isotopes, including the Hoyle state, in varying formation
patterns. The simulations are performed by full Configuration-
Interaction (CI) calculations from first principles on a sound
basis, and their validity is further examined for some observables
by comparing with experimental data. The revealed features are
supported by a statistical learning technique26, and present an
unexpected crossover27 between clustering and normal nuclear
matter.

Results
Multi-nucleon structure by CI simulation. The present CI cal-
culation is called the shell-model (SM) calculation in nuclear
physics. Among various types of SM calculations, the one taken in
this work belongs to Monte Carlo Shell Model (MCSM)28–31. The
MCSM has already been applied to various studies on atomic
nuclei (see examples, 32,33). The present MCSM calculation dif-
fers in that all nucleons are activated (i.e., no inert core)34,35,
implying no core-polarization (or in-medium) correction is
needed. The nucleon-nucleon (NN) interaction is fixed on a
fundamental basis prior to this work as described below, so as to
accurately describe free NN scattering36–38. The whole scheme
can then be referred to as the ab initio No-Core MCSM, which is

a state-of-the-art CI calculation for nuclei running on super-
computers such as K39 and Fugaku40.

The NN interaction we use is the JISP16 interaction36 for Be
isotopes and the Daejeon16 interaction37 for C isotopes. The
inter-nucleon potential of the JISP16 interaction was determined
so as to reproduce NN scattering data and deuteron properties. In
addition, the binding energies of light nuclei are used for fine-
tuning. No explicit three-nucleon interactions are included, but
momentum-dependent NN interaction terms produce similar
effects36. The Daejeon16 interaction is a successor of JISP16. It
has been derived from chiral effective field theory up to N3LO
terms38, and also uses a few properties of light nuclei for the fine-
tuning instead of three-nucleon forces37. Both interactions have
been fixed prior to the present simulation and retain their
excellent descriptions of the NN scattering data. For the Be
isotopes, the results of JISP16 interaction are used in this paper,
because of no notable change by Daejeon16.

In the present CI calculations, protons and neutrons are
moving in certain single-particle states, taking various configura-
tions. Their many-body structure is obtained as solutions of the
Schrödinger equation with the aforementioned NN interaction.
These single-particle states are given by eigenstates of the
harmonic-oscillator (HO) potential. We take a sufficiently large
number of such eigenstates so that a good accuracy is achieved:
the HO shells up to the 6th (5ℏω) or 7th shell (6ℏω) for Be and C
isotopes, respectively, with ℏω being the HO quantum. We note
that the present simulation employs cutting-edge supercomput-
ing: if we were to attempt the same calculation with direct matrix
diagonalization, the dimension of the vector space is as large as
1.2 × 1012 for 8Be and 1.9 × 1019 for 12C. The MCSM enables us
to solve the Schrödinger equation to a good approximation34,
without resorting to such formidable calculations. Some of the
ground-state properties obtained by the present calculation are
reported elsewhere35, and we shall here focus on the clustering.

Manifestation of α-clustering and beryllium isotopes. The
aforementioned eigensolutions provide energy eigenvalues and
wave functions. Figure 2 indicates, for 8,10,12Be, the excitation
energies, Ex(Jπ), of the states of Jπ= 2+ or 4+ on top of the
Jπ= 0+ ground state, while other excited states are omitted for
clarity. One sees a good agreement between the present CI
simulation and experiment. Because this simulation is a first-
principles calculation with no adjustable parameters, this agree-
ment deserves particular attention. Similar results were obtained
for 8Be by the Green’s Function Monte Carlo (GFMC)
calculation17,18, and for Be isotopes by the no-core CI calculation
with the JISP16 interaction41. The three isotopes in Fig. 2 com-
monly exhibit a pattern Ex(4+)/Ex(2+) ~ 3, as reproduced rather
well by the present work. This is a typical pattern of the rotational
motion of a non-spherical quantum object. A schematic image of
the rotational motion of a di-cluster formation is displayed in
Fig. 1b.
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Fig. 1 Schematic illustrations of α clustering in atomic nuclei. a 4He=α particle, b 8Be, and c 12C (three possible cases, i, ii, and iii). The green areas
represent atomic nuclei allowing some movements of α clusters.
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ü Understanding the nuclear deformation ü Understanding the α clustering

Ø Using the BeAGLE model
ü Modifying the nucleus information in the model

Can EIC provide additional constraints on nuclear deformation and 
the α clustering?
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Modifying the EIC model simulations with initial nuclear configurations, which include alpha clustering.
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v The α clustering
Ø Incoherent scattering

Case-1: Woods–Saxon
Case-2: Clustering fixed orientation 

The inclusive 𝑑𝜎/𝑑𝑡 is sensitive to α clustering in 𝐵𝑒+, 𝐶,), and 𝑂,-
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v The α clustering
Ø Nuclei homogeneity
ü The homogeneity of the system via femtoscopy 

measurements [two pion/proton correlations]  

Lei Shen, Bo-Song Huang, and Yu-Gang Ma
Phys.Rev.C 105 (2022) 1, 014603
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FIG. 6: Same as Fig. 4 but for the momentum correlation
function of the two emitted protons.

tion of the two emitted protons in di↵erent situations.
The results show that most protons are emitted before
100 fm/c, which can be considered that they are caused
by the knockout reaction. The other emitted protons
are created in a uniform platform over 100 fm/c, which
can be considered as a result of sequential decay. The
higher the platform, the less stable the nucleus is. Thus,
Fig. 4 shows that the spherical distribution 12C nucleus
is more stable than the triangular clustering 12C nucleus.
Fig. 4(b) and (c) show that for both structures, the more
SRC is added, the less stable the nucleus is. In addition,
for triangle 12C case, the stronger SRC e↵ect (red line,
r0 = 1.1) induces earlier emission of protons.

Fig. 5 shows the di↵erence of momentum distributions
of the two emitted protons in di↵erent situations. Fig.
5(a) shows that the momentum distribution of the two
emitted protons from 12C nucleus with di↵erent struc-
tures are almost the same. Fig. 5(b) and (c) show that
the high momentum parts increase with the addition of

stronger SRC, especially for the triangle case.

Fig. 4(b) and (c) and Fig. 5(b) and (c) show that
both of emission time distribution and momentum dis-
tribution of the triangular clustering 12C nucleus change
more obviously with the addition of SRC. It is generally
considered that the closer the nucleons are combined, the
greater the influence of SRC. Table I indicates that the
RMS radius of the spherical distribution 12C nucleus is
larger than the triangular clustering 12C nucleus, which
means that globally the spherical distribution 12C nu-
cleus combine closer than the triangular clustering 12C
nucleus. We think that in each single ↵ cluster the nu-
cleons combine closer than the spherical structure, so
the triangular clustering 12C nucleus is more sensitive to
SRC. For triangle 12C case, stronger SRC potential (red
line, r0 = 1.1) induces obvious higher momentum compo-
nent. In other word, initial high momentum tail can be
somehow inherited by the higher momentum component
of ejected protons.

Finally, the momentum correlation function of the
emitted proton pair can be calculated by taking this
phase space and emission time information as the input
of LL model which is described in section C. The cal-
culation result of the proton pair knock-out reaction of
12C with di↵erent initial 12C configuration at 250 MeV
is shown in Fig. 6. It shows that the momentum cor-
relation as a function of relative momentum of the two
emitted protons. There is a peak at q = 20 MeV/c, which
is due to the contribution of strong interaction as well as
Coulomb interaction. The function then tends toward
unity at larger relative momentum (q) because of the
vanishing correlation. In Fig. 6(a), we can see that the
black line which refers to target nucleus with spherical
nucleon distribution is significantly higher than the red
line with the triangular cluster structure. The reason can
be explained by the e↵ective emission source size theory
as Ref. [42], which provides a similar result.

The momentum correlation function of the proton
knock-out reaction with the SRC e↵ect is calculated by
the same method, and the result is shown in Fig. 6(b)
and (c) for 12C nucleus with the spherical distribution
and the triangular cluster structure, where the momen-
tum correlation function calculated with di↵erent param-
eters r0 for short range repulsive potential are displayed
with green short dash line, blue dash line and red solid
line, respectively, for r0 = 1.3, 1.2 and 1.1, as well as
the result without the SRC e↵ect which is depicted in
black solid line. It is seen from Fig. 6(a) that with the
increase of the added repulsive potential, the peak grad-
ually decreases, while the calculation without the short
range repulsive potential gives the strongest correlation.
Based on the explanation in Ref. [42], the SRC leads to a
larger size of the e↵ective emission source, which leads to
a lower peak. Besides, the increase of the natural decay
part as shown in Fig. 4(b) and (c) can reduce the peak in
the momentum correlation function, because there is no
stable momentum or emission time correlation between
randomly emitted natural decaying particles, which is

Femtoscopy measurements can be sensitive to the system size.  

Femtoscopy measurements can be sensitive to 
SRC and clustering.  
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tion of the two emitted protons in di↵erent situations.
The results show that most protons are emitted before
100 fm/c, which can be considered that they are caused
by the knockout reaction. The other emitted protons
are created in a uniform platform over 100 fm/c, which
can be considered as a result of sequential decay. The
higher the platform, the less stable the nucleus is. Thus,
Fig. 4 shows that the spherical distribution 12C nucleus
is more stable than the triangular clustering 12C nucleus.
Fig. 4(b) and (c) show that for both structures, the more
SRC is added, the less stable the nucleus is. In addition,
for triangle 12C case, the stronger SRC e↵ect (red line,
r0 = 1.1) induces earlier emission of protons.

Fig. 5 shows the di↵erence of momentum distributions
of the two emitted protons in di↵erent situations. Fig.
5(a) shows that the momentum distribution of the two
emitted protons from 12C nucleus with di↵erent struc-
tures are almost the same. Fig. 5(b) and (c) show that
the high momentum parts increase with the addition of

stronger SRC, especially for the triangle case.

Fig. 4(b) and (c) and Fig. 5(b) and (c) show that
both of emission time distribution and momentum dis-
tribution of the triangular clustering 12C nucleus change
more obviously with the addition of SRC. It is generally
considered that the closer the nucleons are combined, the
greater the influence of SRC. Table I indicates that the
RMS radius of the spherical distribution 12C nucleus is
larger than the triangular clustering 12C nucleus, which
means that globally the spherical distribution 12C nu-
cleus combine closer than the triangular clustering 12C
nucleus. We think that in each single ↵ cluster the nu-
cleons combine closer than the spherical structure, so
the triangular clustering 12C nucleus is more sensitive to
SRC. For triangle 12C case, stronger SRC potential (red
line, r0 = 1.1) induces obvious higher momentum compo-
nent. In other word, initial high momentum tail can be
somehow inherited by the higher momentum component
of ejected protons.

Finally, the momentum correlation function of the
emitted proton pair can be calculated by taking this
phase space and emission time information as the input
of LL model which is described in section C. The cal-
culation result of the proton pair knock-out reaction of
12C with di↵erent initial 12C configuration at 250 MeV
is shown in Fig. 6. It shows that the momentum cor-
relation as a function of relative momentum of the two
emitted protons. There is a peak at q = 20 MeV/c, which
is due to the contribution of strong interaction as well as
Coulomb interaction. The function then tends toward
unity at larger relative momentum (q) because of the
vanishing correlation. In Fig. 6(a), we can see that the
black line which refers to target nucleus with spherical
nucleon distribution is significantly higher than the red
line with the triangular cluster structure. The reason can
be explained by the e↵ective emission source size theory
as Ref. [42], which provides a similar result.

The momentum correlation function of the proton
knock-out reaction with the SRC e↵ect is calculated by
the same method, and the result is shown in Fig. 6(b)
and (c) for 12C nucleus with the spherical distribution
and the triangular cluster structure, where the momen-
tum correlation function calculated with di↵erent param-
eters r0 for short range repulsive potential are displayed
with green short dash line, blue dash line and red solid
line, respectively, for r0 = 1.3, 1.2 and 1.1, as well as
the result without the SRC e↵ect which is depicted in
black solid line. It is seen from Fig. 6(a) that with the
increase of the added repulsive potential, the peak grad-
ually decreases, while the calculation without the short
range repulsive potential gives the strongest correlation.
Based on the explanation in Ref. [42], the SRC leads to a
larger size of the e↵ective emission source, which leads to
a lower peak. Besides, the increase of the natural decay
part as shown in Fig. 4(b) and (c) can reduce the peak in
the momentum correlation function, because there is no
stable momentum or emission time correlation between
randomly emitted natural decaying particles, which is

BeAGLE

(𝑓𝑚)
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Femtoscopy measurements can be sensitive to the clustering.  

v The α clustering
Ø Nuclei homogeneity

We are planning to extend the study to the SRC effect.
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function of the two emitted protons.

tion of the two emitted protons in di↵erent situations.
The results show that most protons are emitted before
100 fm/c, which can be considered that they are caused
by the knockout reaction. The other emitted protons
are created in a uniform platform over 100 fm/c, which
can be considered as a result of sequential decay. The
higher the platform, the less stable the nucleus is. Thus,
Fig. 4 shows that the spherical distribution 12C nucleus
is more stable than the triangular clustering 12C nucleus.
Fig. 4(b) and (c) show that for both structures, the more
SRC is added, the less stable the nucleus is. In addition,
for triangle 12C case, the stronger SRC e↵ect (red line,
r0 = 1.1) induces earlier emission of protons.

Fig. 5 shows the di↵erence of momentum distributions
of the two emitted protons in di↵erent situations. Fig.
5(a) shows that the momentum distribution of the two
emitted protons from 12C nucleus with di↵erent struc-
tures are almost the same. Fig. 5(b) and (c) show that
the high momentum parts increase with the addition of

stronger SRC, especially for the triangle case.

Fig. 4(b) and (c) and Fig. 5(b) and (c) show that
both of emission time distribution and momentum dis-
tribution of the triangular clustering 12C nucleus change
more obviously with the addition of SRC. It is generally
considered that the closer the nucleons are combined, the
greater the influence of SRC. Table I indicates that the
RMS radius of the spherical distribution 12C nucleus is
larger than the triangular clustering 12C nucleus, which
means that globally the spherical distribution 12C nu-
cleus combine closer than the triangular clustering 12C
nucleus. We think that in each single ↵ cluster the nu-
cleons combine closer than the spherical structure, so
the triangular clustering 12C nucleus is more sensitive to
SRC. For triangle 12C case, stronger SRC potential (red
line, r0 = 1.1) induces obvious higher momentum compo-
nent. In other word, initial high momentum tail can be
somehow inherited by the higher momentum component
of ejected protons.

Finally, the momentum correlation function of the
emitted proton pair can be calculated by taking this
phase space and emission time information as the input
of LL model which is described in section C. The cal-
culation result of the proton pair knock-out reaction of
12C with di↵erent initial 12C configuration at 250 MeV
is shown in Fig. 6. It shows that the momentum cor-
relation as a function of relative momentum of the two
emitted protons. There is a peak at q = 20 MeV/c, which
is due to the contribution of strong interaction as well as
Coulomb interaction. The function then tends toward
unity at larger relative momentum (q) because of the
vanishing correlation. In Fig. 6(a), we can see that the
black line which refers to target nucleus with spherical
nucleon distribution is significantly higher than the red
line with the triangular cluster structure. The reason can
be explained by the e↵ective emission source size theory
as Ref. [42], which provides a similar result.

The momentum correlation function of the proton
knock-out reaction with the SRC e↵ect is calculated by
the same method, and the result is shown in Fig. 6(b)
and (c) for 12C nucleus with the spherical distribution
and the triangular cluster structure, where the momen-
tum correlation function calculated with di↵erent param-
eters r0 for short range repulsive potential are displayed
with green short dash line, blue dash line and red solid
line, respectively, for r0 = 1.3, 1.2 and 1.1, as well as
the result without the SRC e↵ect which is depicted in
black solid line. It is seen from Fig. 6(a) that with the
increase of the added repulsive potential, the peak grad-
ually decreases, while the calculation without the short
range repulsive potential gives the strongest correlation.
Based on the explanation in Ref. [42], the SRC leads to a
larger size of the e↵ective emission source, which leads to
a lower peak. Besides, the increase of the natural decay
part as shown in Fig. 4(b) and (c) can reduce the peak in
the momentum correlation function, because there is no
stable momentum or emission time correlation between
randomly emitted natural decaying particles, which is

 1

 1.5

 0  20  40  60  80  100

C
π

π
k

*
(MeV)

e+
12

C
b = 0.0-1.0 (fm)

Woods���Saxon 

Clustering fixed

6

0

1

2

3

4

5

0

1

2

3

4

5

20 40 60 80 100
0

1

2

3

C
pp

 spherical
 triangle

(a) without SRC

C
pp

 without SRC
 r0=1.1
 r0=1.2
 r0=1.3

(b) spherical

C
pp

q (MeV/c)

 without SRC
 r0=1.1
 r0=1.2
 r0=1.3

(c) triangle
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tion of the two emitted protons in di↵erent situations.
The results show that most protons are emitted before
100 fm/c, which can be considered that they are caused
by the knockout reaction. The other emitted protons
are created in a uniform platform over 100 fm/c, which
can be considered as a result of sequential decay. The
higher the platform, the less stable the nucleus is. Thus,
Fig. 4 shows that the spherical distribution 12C nucleus
is more stable than the triangular clustering 12C nucleus.
Fig. 4(b) and (c) show that for both structures, the more
SRC is added, the less stable the nucleus is. In addition,
for triangle 12C case, the stronger SRC e↵ect (red line,
r0 = 1.1) induces earlier emission of protons.

Fig. 5 shows the di↵erence of momentum distributions
of the two emitted protons in di↵erent situations. Fig.
5(a) shows that the momentum distribution of the two
emitted protons from 12C nucleus with di↵erent struc-
tures are almost the same. Fig. 5(b) and (c) show that
the high momentum parts increase with the addition of

stronger SRC, especially for the triangle case.

Fig. 4(b) and (c) and Fig. 5(b) and (c) show that
both of emission time distribution and momentum dis-
tribution of the triangular clustering 12C nucleus change
more obviously with the addition of SRC. It is generally
considered that the closer the nucleons are combined, the
greater the influence of SRC. Table I indicates that the
RMS radius of the spherical distribution 12C nucleus is
larger than the triangular clustering 12C nucleus, which
means that globally the spherical distribution 12C nu-
cleus combine closer than the triangular clustering 12C
nucleus. We think that in each single ↵ cluster the nu-
cleons combine closer than the spherical structure, so
the triangular clustering 12C nucleus is more sensitive to
SRC. For triangle 12C case, stronger SRC potential (red
line, r0 = 1.1) induces obvious higher momentum compo-
nent. In other word, initial high momentum tail can be
somehow inherited by the higher momentum component
of ejected protons.

Finally, the momentum correlation function of the
emitted proton pair can be calculated by taking this
phase space and emission time information as the input
of LL model which is described in section C. The cal-
culation result of the proton pair knock-out reaction of
12C with di↵erent initial 12C configuration at 250 MeV
is shown in Fig. 6. It shows that the momentum cor-
relation as a function of relative momentum of the two
emitted protons. There is a peak at q = 20 MeV/c, which
is due to the contribution of strong interaction as well as
Coulomb interaction. The function then tends toward
unity at larger relative momentum (q) because of the
vanishing correlation. In Fig. 6(a), we can see that the
black line which refers to target nucleus with spherical
nucleon distribution is significantly higher than the red
line with the triangular cluster structure. The reason can
be explained by the e↵ective emission source size theory
as Ref. [42], which provides a similar result.

The momentum correlation function of the proton
knock-out reaction with the SRC e↵ect is calculated by
the same method, and the result is shown in Fig. 6(b)
and (c) for 12C nucleus with the spherical distribution
and the triangular cluster structure, where the momen-
tum correlation function calculated with di↵erent param-
eters r0 for short range repulsive potential are displayed
with green short dash line, blue dash line and red solid
line, respectively, for r0 = 1.3, 1.2 and 1.1, as well as
the result without the SRC e↵ect which is depicted in
black solid line. It is seen from Fig. 6(a) that with the
increase of the added repulsive potential, the peak grad-
ually decreases, while the calculation without the short
range repulsive potential gives the strongest correlation.
Based on the explanation in Ref. [42], the SRC leads to a
larger size of the e↵ective emission source, which leads to
a lower peak. Besides, the increase of the natural decay
part as shown in Fig. 4(b) and (c) can reduce the peak in
the momentum correlation function, because there is no
stable momentum or emission time correlation between
randomly emitted natural decaying particles, which is

BeAGLE

Case-1: Woods–Saxon
Case-2: Clustering fixed orientation 
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v The α clustering
Identify the physics observables that can be used in such work.

ü Several observables have been introduced (e.g., mean energy observable)
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v The α clustering
Identify the physics observables that can be used in such work.

ü Several observables have been introduced (e.g., mean energy observable)
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v Deformed Pb (𝛽! = 0.28, 𝛽" = 0.093)

Neutrons and Protons from all sources 
in forward rapidity show sensitivity to 
𝛽"	and 𝛽% deformation in different 

centrality selections.
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ü The ratio of the undeformed to deformed Pb

𝑅𝑎
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𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦	(%)

𝑒 + 𝑃𝑏
BeAGLE
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Search for baryon junctions in isobar collisions at EIC 

What carries the baryon number? 

niseemm@gmail.com
Inspire-hep: 1305036
ORCID: 0000-0002-6458-6552 

Niseem Magdy
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What carries the baryon number? 

Baryon number: carried by the valence quarks? 
ü ± $

(
𝐵	to each quark and antiquark cannot be inferred from QCD's first principles for baryons! 

ü Valence quarks carry most of the momentum and are contracted into thin “pancakes” at high 
energy. 

ü Quarks have less time to interact due to contracted longitudinal length

This is an assumption 𝐵 =
1
3
	(𝑛) 	− 	𝑛 *))

The string junction?
ü Non-perturbative configuration of gluons represented by a locally gauge-invariant state vector.
ü Carries lower momentum and is less contracted
ü Made of low-x gluons and has more time to interact with other partons
ü Enhanced baryon transport to mid-rapidity  

Neither of these scenarios has been verified 
experimentally.
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What carries the baryon number? 

6 4/12/2023 Chun Yuen Tsang, GHP 2023

Expected values of B/Δ𝑄*ΔZ/A for different carriers

YBeam

y = 0 (C.M.)

y = 0.5y = -0.5

Naïve expectation for 
valence quark as carrier = 1

Tot. Baryon = 96*Const
Tot. p = Tot. Baryon*Z/A

• 𝐵𝑖𝑛𝑖𝑡=96*Const

• Δ𝑄𝑖𝑛𝑖𝑡 =  𝑄𝑖𝑛𝑖𝑡 (𝑅𝑢 − 𝑍𝑟)=96*Const*4/96

• (B/Δ𝑄*ΔZ/A)init = 1, should not change as 
partons evolve if B and Q are carried by 
valence quarks.

• For junction, B is enhanced so B/Δ𝑄*ΔZ/A > 1

Ru or Zr
• For Ru, A = 96, Z = 44
• For Zr,  A = 96, Z = 40 

Chun Yuen Tsang, Quark Matter 2023

Expectation for junction: 
Somewhere above 1

• 𝐵 = 𝑁𝑝 − 𝑁 ҧ𝑝 + 𝑁𝑛 − 𝑁ത𝑛

• 𝑄 = 𝑁𝜋+ + 𝑁𝐾+ + 𝑁𝑝 − 𝑁𝜋− + 𝑁𝐾− + 𝑁 ҧ𝑝

Several methods are suggested to test the hypothesis: 
Ø Net-Baryon in e+A collisions

ü The photon excepted has almost zero virtuality
ü Probes the nucleus at low-𝑥

Ø Net-Baryon vs. Net-Electric charge in Isobar collisions
ü The ratio B/Δ𝑄*ΔZ/A can be used to differentiate different carriers

• Valence quarks carry B and Q if (B/Δ𝑄*ΔZ/A) = 1
• Junction carry B (i.e., B is enhanced) if  B/Δ𝑄*ΔZ/A > 1 



22

At the RHIC

16

Net-proton exponential slope (𝜶𝑩)

• 𝜶𝑩~ 0.6 for Au+Au [1, 2]
• 𝜶𝑩~ 𝟏 for 𝜸 + 𝐀𝐮
• Predicted values from HERWIG and 

PYTHIA (both versions) disagree with 
data
• PYTHIA 8 includes a junction-like 

mechanism in final-state hadronization [3]

• Slopes for Junction-Junction (J+J) 
and Junction-Pomeron (J+P) 
predictions are more compatible with 
data [4]

[1] STAR, PRC 79, 034909 (2009) 
[2] STAR, PRC 96, 044904 (2017)
[3] Christiansen, J. R. & Skands, P. Z. String Formation Beyond Leading 
Colour. JHEP 08, 003 (2015). 1505.01681.

[4] Kharzeev, D. Can gluons trace baryon number? Phys. Lett. B 378, 238–
246 (1996).nucl-th/9602027.

Chun Yuen Tsang, Quark Matter 2023

STAR Preliminary

[1] STAR, PRC 79, 034909 (2009)
[2] STAR, PRC 96, 044904 (2017)
[3] Christiansen, J. R. & Skands, P. Z. JHEP 08, 003 (2015)
[4] Kharzeev, Phys. Lett. B 378, 238– 246 (1996)

Chun Yuen Tsang (QM 2023)

STAR preliminary results point out that:
Ø 𝛼+~0.6 for Au+Au
Ø 𝛼+~1.0 for 𝛾+Au
Ø Predicted values from:

ü  HERWIG and PYTHIA disagree with the data
ü Junction-Junction (J+J) and Junction-Pomeron 

(J+P) are more compatible with data 

The 𝑑𝑁/𝑑𝑦|!"#$%
If the junction hypothesis is true:
Ø Interact with a junction in the target nucleus
Ø Enhanced creation of mid-rapidity baryons

ü Junction interaction time > quark interaction time
ü More baryons are stopped in the junction picture

Ø Regge theory prediction:
ü

&'
&(
	 ∝ 𝑒)!	((,("#$%)

ü 𝛼.	is related to Regge intercept of junctions (𝛼.	~	0.5)
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Net-Baryon vs. Net-Electric charge in Isobar collisions
Ø The ratio B/Δ𝑄*ΔZ/A can be used to differentiate 

different carriers
Ø Valence quarks carry B and Q if 

(B/Δ𝑄*ΔZ/A) = 1
Ø Junction carry B (i.e., B is enhanced) if  

(B/Δ𝑄*ΔZ/A) > 1 

Isobaric ratio 

11

Experimental result on Net-Charge and Net-Baryon 

4/12/2023 Chun Yuen Tsang, GHP 2023

• B/Δ𝑄∗ΔZ/A > 𝟏 

• Model calculations (Herwig 𝑝 + 𝑝 (B/Q*Z/A, 
Z=A=1) [1] and UrQMD [2]) cannot 
describe our data

• Decrease with decreasing 𝑵𝒑𝒂𝒓𝒕

• Similar trend seen in Trento model [3] 
• Trento model accounts for initial conditions only
• Consistent with change in neutron skin thickness 

differences 
[1]:J. Bellm et al, Eur. Phys. J.C. 80 5, 452 (2020)
[2]: M. Bleicher et al, J. Phys. G. 25, 1859 (1999)
[3]: H. Xu et al, PRC 105, L011901 (2022)

Chun Yuen Tsang, Quark Matter 2023

Chun Yuen Tsang (QM 2023)

STAR preliminary results point out that:
Ø (B/Δ𝑄*ΔZ/A) > 1
Ø Model calculations:

ü All presented models cannot describe the data 
ü Trento model accounts for initial conditions only, 

and  it’s consistent with changes in neutron skin 
thickness differences 

At the RHIC
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At RHIC:
Ø RHIC nuclear energy is at a sweet spot but has limited acceptance in rapidity Q2 and x

At EIC: 
Ø Suitable energy range, good acceptance in rapidity (extended from 2.5 to 6.0) Q2 and x

ü Low-pt PID is needed to study the charge and baryon transports

Can EIC answer such a question?

What carries the baryon number? 
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The 𝑑𝑁/𝑑𝑦|!"#$%
If the junction hypothesis is true:
Ø Interact with a junction in the target nucleus

Ø Enhanced creation of mid-rapidity baryons
ü Junction interaction time > quark interaction time
ü More baryons are stopped in the junction picture

Ø Regge theory prediction:
ü

&'
&(
	 ∝ 𝑒)!	((,("#$%)

ü 𝛼.	is related to Regge intercept of junctions (𝛼.	~	0.5)

(J. D. Brandenburg, N. Lewis, P. Tribedy, Z. Xu, arXiv:2205.05685 (2022)).

95 is soft, non-diffractive VMD low pT
99 is LO DIS

dN
/d

y|
N
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y-Ybeam

PYTHIA 6.4
e+Au 10× 40 GeV
Q2< 1.0 (GeV/c)2, pT > 0.0 GeV/c

Ybeam=4.45
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Line = b	e9	:𝛼+	from PYTHIA is larger than the prediction for the 

junction expectation

What is the x and Q2 dependence of 𝛼+?
Ongoing work 

At the EIC
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If the junction hypothesis is true:
Ø Interact with a junction in the target nucleus

Ø Enhanced creation of mid-rapidity baryons
ü Junction interaction time > quark interaction time
ü More baryons are stopped in the junction picture

Ø Regge theory prediction:
ü

&'
&(
	 ∝ 𝑒)!	((,("#$%)

ü 𝛼.	is related to Regge intercept of junctions (𝛼.	~	0.5)

dN
/d

y|
N

et
-p

y-Ybeam

BeAGLE
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95 is soft, non-diffractive VMD low pT
99 is LO DIS

The 𝑑𝑁/𝑑𝑦|!"#$%

BeAGLE results suggest two slopes (larger than 1.0) 
depending on the rapidity range

What is the x and Q2 dependence of 𝛼+?
Ongoing work

At the EIC
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If the junction hypothesis is true:
Ø Interact with a junction in the target nucleus

Ø Enhanced creation of mid-rapidity baryons
ü Junction interaction time > quark interaction time
ü More baryons are stopped in the junction picture

Ø Regge theory prediction:
ü

&'
&(
	 ∝ 𝑒)!	((,("#$%)

ü 𝛼.	is related to Regge intercept of junctions (𝛼.	~	0.5)
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The 𝑑𝑁/𝑑𝑦|!"#$%

BeAGLE results suggest two slopes (larger than 1.0) 
depending on the rapidity range

What is the x and Q2 dependence of 𝛼+?
Ongoing work 

At the EIC
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Ø Net-Baryon vs. Net-Electric charge in Isobar 
collisions
ü The ratio B/Δ𝑄*ΔZ/A can be used to 

differentiate different carriers
• Valence quarks carry B and Q if 

(B/Δ𝑄*ΔZ/A) <= 1
• Junction carry B (i.e., B is enhanced) if  

B/Δ𝑄*ΔZ/A > 1 

Isobaric ratio 
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Ø 𝑅(𝐼𝑠𝑜𝑏𝑎𝑟) is independent of 𝑥;!  
ü Consistent with the quark's scenario 
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Ø Net-Baryon vs. Net-Electric charge in Isobar 
collisions
ü The ratio B/Δ𝑄*ΔZ/A can be used to 

differentiate different carriers
• Valence quarks carry B and Q if 

(B/Δ𝑄*ΔZ/A) = 1
• Junction carry B (i.e., B is enhanced) if  

B/Δ𝑄*ΔZ/A > 1 
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Ø Net-Baryon vs. Net-Electric charge in Isobar 
collisions
ü The ratio B/Δ𝑄*ΔZ/A can be used to 

differentiate different carriers
• Valence quarks carry B and Q if 

(B/Δ𝑄*ΔZ/A) = 1
• Junction carry B (i.e., B is enhanced) if  

B/Δ𝑄*ΔZ/A > 1 

Isobaric ratio 

95 is soft, non-diffractive VMD low pT
99 is LO DIS

BeAGLE shows value consistent 
with the quark's scenario   

Ø 𝑅(𝐼𝑠𝑜𝑏𝑎𝑟) show dependence on the 
BeAGLE processes 
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We investigated the ability to use the EIC to study the α clustering in 𝟒𝟗𝑩𝒆, 𝟔
𝟏𝟐𝑪, and 𝟖

𝟏𝟔𝑶:

Ø We proposed three measurements
ü Incoherent scattering
ü Nuclei homogeneity
ü The system energy/momentum

Our proposed measurements are sensitive 
to α clustering and its configuration.

Conclusions

Ø The net-baryon yield slopes from PYTHIA and BeAGLE simulations are much 
steeper than expected from the baryon junction picture 

Ø The isobaric ratios in BeAGLE  are shown to be less than 1.0
ü Independent of xB 
ü Independent of Q2

We investigated the ability to use the EIC to study baryon junctions in isobar collisions: 

Consistent with the quark's scenario. 
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v Correlations of the 𝐸STU  and impact parameter 

Neutrons from all sources can be used for centrality definition. 
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collisions, while the red points depict peripheral collisions.
The solid markers show the generated distribution without
smearing, while the open markers include detector smear-
ing. One can conclude that the results at generator level and
after detector smearing are almost identical. The small
impact of the ZDC energy resolution on centrality does not
put stringent requirements on the ZDC performance.
Second, in this analysis, the default option is τ0 ¼ 10 fm

and genShd ¼ 3. In order to study the impact of τ0 on
centrality, it was lowered to 3 fm. A smaller τ0 means more
particles can be formed in the nucleus, which results in
more emitted neutrons from the nuclear breakup, and
consequently a larger energy deposition in the ZDC.
Figures 15(b) and 16(b) show the b and TðbÞ=ρ0 com-
parison for τ0 ¼ 10 and 3 fm in both central and peripheral
collisions for the genShd ¼ 3 case, respectively. There is
no significant difference between the distributions of τ0 ¼
10 and 3 fm observed for peripheral events, while some
differences for central events. However, the difference
between peripheral and central events is small, showing
a weak dependence on τ0.

Third, the energy of the emitted particles scales with the
beam energy. However, for the b distribution, there is no
significant difference between central and peripheral colli-
sions for the various beam energies, as shown in Fig. 15(c).
The same behavior is observed for TðbÞ=ρ0 and summa-
rized in Fig. 16(c). This indicates that there is no beam
energy dependence for the centrality definition. Therefore,
although some model parameters are not precisely deter-
mined in BeAGLE, we find that the correlation between
ZDC energy and collision geometry is very stable.
To model nuclear shadowing effects, BeAGLE has three

different models implemented, as described in Sec. II A.
Studies indicate a very small effect of shadowing on the
energy deposition in the ZDC in the BeAGLE framework.
Predictions for b and TðbÞ=ρ0 with the different shadowing
models are also studied. Figures 15(d) and 16(d) show the
comparison of b and TðbÞ=ρ0 between genShd ¼ 3 and
genShd ¼ 1, respectively. In both distributions, no differ-
ence is observed between the two shadowing options in
central collisions, but some differences are seen in periph-
eral collisions. The observed differences arise from the
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v The detector’s acceptance:
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Ø In this current study, we are using: ZDC and B0 detectors 

𝐵! 𝑍𝐷𝐶

𝜂
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3

FIG. 1: The modified two-body potentials with di↵erent r0,
the black line is the original two-body potential U0.

model. So the method to consider the repulsive potential
is to add the repulsive term which is similar to the so-
called the Lennard-Jones potential [45] into the original
two-body potential. The form is shown as follow

U = U0 + U1, (7)

dU0

dr
= � 2CU0e

�rij
2

�i+�j

p
⇡3(�i + �j)5

, (8)

U1 =
CU1

(r + r0)p1
, (9)

where U0 is the original two-body potential of EQMD.
The expression of U0 is transcendental function, only the
analytical expression of dU0

dr is given here. rij is the dis-
tance of centers of wave packet of two nucleons. U1 is the
added repulsive potential. CU0 and CU1 are the derived
constant coe�cients of two potentials. In Fig. 1, we see
that repulsive potential in short range is reduced with
the increasing of the parameter r0.

Then we can calculate the influence of the adding SRC
to the EQMD model. With di↵erent parameters the re-
pulsive potential is finite at r = 0 after setting r0.

C. Lednicky and Lyuboshitz’s analytical method

Some studies have shown that the proton pair momen-
tum correlation function is an e↵ective probe to study
the SRC e↵ect. Momentum correlation function, also
known as the Hanbury-Brown and Twiss (HBT) e↵ect
[40–42, 46–51], is widely used in the study of heavy ion
collision dynamics as well as the Fermion pair dynam-
ics in three-body decay [52–57]. In this paper, Lednicky
and Lyuboshitz’s analytical method (LL model) [58] is
used to calculate momentum correlation function. The

LL model can deal with the particle-particle correlation
function with small relative momentum controlled by the
quantum statistical e↵ect and the final state interaction.
The correlation function can be obtained by the sum of
the squares of the mean Bethe-Salpeter amplitudes in
the four coordinates of the emitted particles and the to-
tal spin of the two-particle system. Based on the con-
ditions described in Ref. [58], the correlation function of
two particles can be written as

~C

⇣
~k
⇤
⌘
=

R
~S

⇣
~r
⇤
,~k

⇤
⌘ �� ~k⇤ (~r⇤)

��2 d4~r⇤
R
~S

⇣
~r⇤,~k⇤

⌘
d4~r⇤

, (10)

where ~r
⇤ = ~x1 � ~x2 is the relative distance of two parti-

cles at their kinetic freeze-out, ~k⇤ is half of the relative
momentum between two particles and later one we use

q for the same quantity, ~S
⇣
~r
⇤
,~k

⇤
⌘
is the probability to

emit a particle pair with given ~r
⇤ and ~k

⇤, i.e., the source
emission function, and  ~k⇤ (~r⇤) is Bethe-Salpeter ampli-
tude which can be approximated by the outer solution of
the scattering problem [59].

III. RESULTS AND DISCUSSION

After cooling process discussed above in the EQMD
model, we obtain the stable target nucleus with short-
range potential. With di↵erent settings of the Pauli po-
tential, we can obtain 12C nucleus with di↵erent struc-
ture, such as triangle ↵-cluster structure and spherical
distribution, namely the Woods-Saxon distribution. Us-
ing the equation (1), the RMS radius can be calculated.
The results of rRMS and binding energy are shown in
Table I where the experimental data is taken from the
IAEA nuclear data. Table I indicates that the RMS ra-
dius of triangular cluster 12C is larger than the experi-
mental data, while the one of spherical distribution 12C
is lower than the data. The binding energy of triangular
cluster 12C is lower than the experimental data, while
the one of spherical distribution 12C is higher than the
data. We can consider that both the cluster structure
and spherical distribution could be in the ground state
of the nucleus, but they are di↵erent components of the
ground state. After superimposing the two results with a
certain proportion, the result could be better close to the
experimental data. Table I also indicates that with the
addition of stronger repulsive potential for the spherical
configuration (i.e. from r0 = 1.3 to r0 = 1.1), the RMS
radius becomes larger, but the binding energy becomes
lower; for the triangular case, the RMS radius changes
not much, but the binding energy becomes lower as well.

Momentum distribution of nucleons of 12C with SRC
can be also obtained after cooling process as shown in
Fig. 2 where the red, blue and green lines indicate the
momentum distribution with di↵erent parameters for re-

Scott Pratt, model

v We use a hadronic afterburner that introduces such information.



Ø Deformed Pb (𝛽! = 0.28, 𝛽" = 0.093)

Neutrons and Protons from all sources in forward rapidity show sensitivity 
to 𝛽"	and 𝛽% deformation in different centrality selections.
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𝐶𝑒𝑛𝑡(%)

Neutrons in 
ZDC

Neutrons in 
B0 Protons in RP

𝐶𝑒𝑛𝑡(%) 𝐶𝑒𝑛𝑡(%)

𝑒 + 𝑃𝑏
BeAGLE

𝑒 + 𝑃𝑏
BeAGLE

𝑒 + 𝑃𝑏
BeAGLE

ü The ratio of the undeformed to deformed Pb
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Femtoscopy 
measurements can be 

sensitive to the clustering.  

v The α clustering
Ø Nuclei homogeneity

We are planning to extend the 
study to the SRC effect.
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FIG. 6: Same as Fig. 4 but for the momentum correlation
function of the two emitted protons.

tion of the two emitted protons in di↵erent situations.
The results show that most protons are emitted before
100 fm/c, which can be considered that they are caused
by the knockout reaction. The other emitted protons
are created in a uniform platform over 100 fm/c, which
can be considered as a result of sequential decay. The
higher the platform, the less stable the nucleus is. Thus,
Fig. 4 shows that the spherical distribution 12C nucleus
is more stable than the triangular clustering 12C nucleus.
Fig. 4(b) and (c) show that for both structures, the more
SRC is added, the less stable the nucleus is. In addition,
for triangle 12C case, the stronger SRC e↵ect (red line,
r0 = 1.1) induces earlier emission of protons.

Fig. 5 shows the di↵erence of momentum distributions
of the two emitted protons in di↵erent situations. Fig.
5(a) shows that the momentum distribution of the two
emitted protons from 12C nucleus with di↵erent struc-
tures are almost the same. Fig. 5(b) and (c) show that
the high momentum parts increase with the addition of

stronger SRC, especially for the triangle case.

Fig. 4(b) and (c) and Fig. 5(b) and (c) show that
both of emission time distribution and momentum dis-
tribution of the triangular clustering 12C nucleus change
more obviously with the addition of SRC. It is generally
considered that the closer the nucleons are combined, the
greater the influence of SRC. Table I indicates that the
RMS radius of the spherical distribution 12C nucleus is
larger than the triangular clustering 12C nucleus, which
means that globally the spherical distribution 12C nu-
cleus combine closer than the triangular clustering 12C
nucleus. We think that in each single ↵ cluster the nu-
cleons combine closer than the spherical structure, so
the triangular clustering 12C nucleus is more sensitive to
SRC. For triangle 12C case, stronger SRC potential (red
line, r0 = 1.1) induces obvious higher momentum compo-
nent. In other word, initial high momentum tail can be
somehow inherited by the higher momentum component
of ejected protons.

Finally, the momentum correlation function of the
emitted proton pair can be calculated by taking this
phase space and emission time information as the input
of LL model which is described in section C. The cal-
culation result of the proton pair knock-out reaction of
12C with di↵erent initial 12C configuration at 250 MeV
is shown in Fig. 6. It shows that the momentum cor-
relation as a function of relative momentum of the two
emitted protons. There is a peak at q = 20 MeV/c, which
is due to the contribution of strong interaction as well as
Coulomb interaction. The function then tends toward
unity at larger relative momentum (q) because of the
vanishing correlation. In Fig. 6(a), we can see that the
black line which refers to target nucleus with spherical
nucleon distribution is significantly higher than the red
line with the triangular cluster structure. The reason can
be explained by the e↵ective emission source size theory
as Ref. [42], which provides a similar result.

The momentum correlation function of the proton
knock-out reaction with the SRC e↵ect is calculated by
the same method, and the result is shown in Fig. 6(b)
and (c) for 12C nucleus with the spherical distribution
and the triangular cluster structure, where the momen-
tum correlation function calculated with di↵erent param-
eters r0 for short range repulsive potential are displayed
with green short dash line, blue dash line and red solid
line, respectively, for r0 = 1.3, 1.2 and 1.1, as well as
the result without the SRC e↵ect which is depicted in
black solid line. It is seen from Fig. 6(a) that with the
increase of the added repulsive potential, the peak grad-
ually decreases, while the calculation without the short
range repulsive potential gives the strongest correlation.
Based on the explanation in Ref. [42], the SRC leads to a
larger size of the e↵ective emission source, which leads to
a lower peak. Besides, the increase of the natural decay
part as shown in Fig. 4(b) and (c) can reduce the peak in
the momentum correlation function, because there is no
stable momentum or emission time correlation between
randomly emitted natural decaying particles, which is
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FIG. 6: Same as Fig. 4 but for the momentum correlation
function of the two emitted protons.

tion of the two emitted protons in di↵erent situations.
The results show that most protons are emitted before
100 fm/c, which can be considered that they are caused
by the knockout reaction. The other emitted protons
are created in a uniform platform over 100 fm/c, which
can be considered as a result of sequential decay. The
higher the platform, the less stable the nucleus is. Thus,
Fig. 4 shows that the spherical distribution 12C nucleus
is more stable than the triangular clustering 12C nucleus.
Fig. 4(b) and (c) show that for both structures, the more
SRC is added, the less stable the nucleus is. In addition,
for triangle 12C case, the stronger SRC e↵ect (red line,
r0 = 1.1) induces earlier emission of protons.

Fig. 5 shows the di↵erence of momentum distributions
of the two emitted protons in di↵erent situations. Fig.
5(a) shows that the momentum distribution of the two
emitted protons from 12C nucleus with di↵erent struc-
tures are almost the same. Fig. 5(b) and (c) show that
the high momentum parts increase with the addition of

stronger SRC, especially for the triangle case.

Fig. 4(b) and (c) and Fig. 5(b) and (c) show that
both of emission time distribution and momentum dis-
tribution of the triangular clustering 12C nucleus change
more obviously with the addition of SRC. It is generally
considered that the closer the nucleons are combined, the
greater the influence of SRC. Table I indicates that the
RMS radius of the spherical distribution 12C nucleus is
larger than the triangular clustering 12C nucleus, which
means that globally the spherical distribution 12C nu-
cleus combine closer than the triangular clustering 12C
nucleus. We think that in each single ↵ cluster the nu-
cleons combine closer than the spherical structure, so
the triangular clustering 12C nucleus is more sensitive to
SRC. For triangle 12C case, stronger SRC potential (red
line, r0 = 1.1) induces obvious higher momentum compo-
nent. In other word, initial high momentum tail can be
somehow inherited by the higher momentum component
of ejected protons.

Finally, the momentum correlation function of the
emitted proton pair can be calculated by taking this
phase space and emission time information as the input
of LL model which is described in section C. The cal-
culation result of the proton pair knock-out reaction of
12C with di↵erent initial 12C configuration at 250 MeV
is shown in Fig. 6. It shows that the momentum cor-
relation as a function of relative momentum of the two
emitted protons. There is a peak at q = 20 MeV/c, which
is due to the contribution of strong interaction as well as
Coulomb interaction. The function then tends toward
unity at larger relative momentum (q) because of the
vanishing correlation. In Fig. 6(a), we can see that the
black line which refers to target nucleus with spherical
nucleon distribution is significantly higher than the red
line with the triangular cluster structure. The reason can
be explained by the e↵ective emission source size theory
as Ref. [42], which provides a similar result.

The momentum correlation function of the proton
knock-out reaction with the SRC e↵ect is calculated by
the same method, and the result is shown in Fig. 6(b)
and (c) for 12C nucleus with the spherical distribution
and the triangular cluster structure, where the momen-
tum correlation function calculated with di↵erent param-
eters r0 for short range repulsive potential are displayed
with green short dash line, blue dash line and red solid
line, respectively, for r0 = 1.3, 1.2 and 1.1, as well as
the result without the SRC e↵ect which is depicted in
black solid line. It is seen from Fig. 6(a) that with the
increase of the added repulsive potential, the peak grad-
ually decreases, while the calculation without the short
range repulsive potential gives the strongest correlation.
Based on the explanation in Ref. [42], the SRC leads to a
larger size of the e↵ective emission source, which leads to
a lower peak. Besides, the increase of the natural decay
part as shown in Fig. 4(b) and (c) can reduce the peak in
the momentum correlation function, because there is no
stable momentum or emission time correlation between
randomly emitted natural decaying particles, which is
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