
Opportunities with a 2nd EIC detector at IP8

Wenliang (Bill) Li, @ CFNS Postdoc Meetup

Oct 19, 2023

Why do we need a 2nd detector?

Needed to unlock the full discovery potential of the EIC

- Implies a general-purpose collider detector able to support the full EIC program
- Cross checks of key results are essential!

Complementary design features (to ePIC)

- Combined systematics (as for H1 and ZEUS)
- Phase-space coverage
- The EIC will high statistics, uncertainties for the envisioned measurements will be systematics limited.

New physics opportunities

- Take advantage of much-improved near-beam hadron detection enabled by a 2nd focus,
- Impacts, for instance, exclusive / diffractive physics; greatly expands the ability to measure recoiling nuclei and fragments from nuclear breakup.
- New ideas beyond the NAS and Yellow Report scope (EW and BSM)?

Opinions on the 2nd Detector

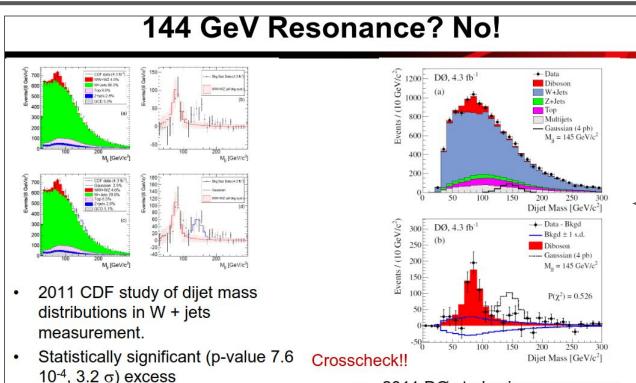
Two documented opinion pieces on the subject:

JLAB-PHY-23-3761

Motivation for Two Detectors at a Particle Physics Collider

Paul D. Grannis* and Hugh E. Montgomery (Dated: March 27, 2023)

It is generally accepted that it is preferable to build two general purpose detectors at any given collider facility. We reinforce this point by discussing a number of aspects and particular instances in which this has been important. The examples are taken mainly, but not exclusively, from experience at the Tevatron collider.


Opinion 2: P. Grannis and H. Montgomery

Good cases were made for both nuclear and particle physics experiment

Opinion 1: Rolf Ent and Richard Milner el. al. for EICUG SC

Prime Example of Cross Check Power

Fit to extra Gaussian with width

scaled to dijet resolution→ mass

144+- 5 GeV, σ.BR = 4 pb.

 2011 DØ study gives no excess, with likelihood of 145 GeV resonance of σ.BR= 4 pb of 8. 10⁻⁶ Rejection 4.3 σ, 95% CL UL 1.9 pb

- A talk given by H. Montgomery: https://indico.cern.ch/event/123 8718/sessions/495759/
 - Result verification
 - Mass determination
 - Veto false signals
 - A slide stolen from Mont's talk at EICUG 2023 on vetoing false signal
- My person take: EIC carries the potential for discovery level physics: would anyone believe our result without cross-check?

Organization and Effort to date

A detector 2 WG under EIC User Group

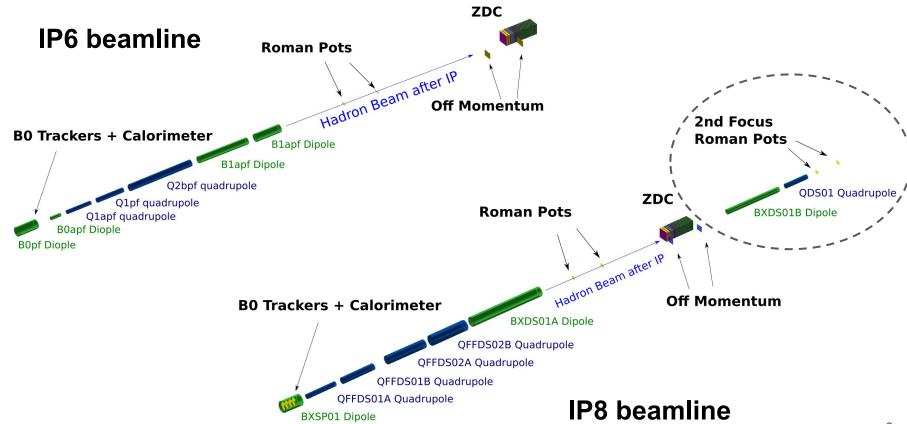
- Group Page: https://eicug.github.io/content/wg.html#detector-iiip8-group
- Physics sub-WG
- Detector sub-WG
- Conveners: Klaus Dehmelt (CFNS/SBU), Charles Hyde (ODU), Sangbaek Lee (ANL), Simonetta Liuti (UVA), Pawel Nadel-Turonski (CFNS/SBU), Bjoern Schenke (BNL), Ernst Sichtermann (LBL), Thomas Ullrich (BNL), Anselm Vossen (Duke/JLab)
- General mailing list: eic-det2-l@lists.bnl.gov
- Convener mailing list: eic-det2-conveners-l@lists.bnl.gov

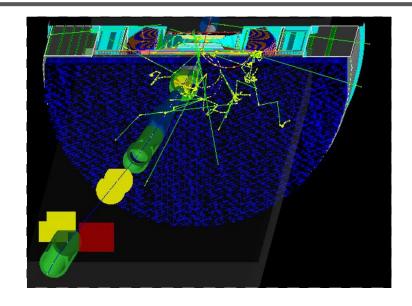
Meetings:

- Preparation meeting (SBU CFNS):
 - https://indico.bnl.gov/event/17693/
- 1st International Workshop on A 2nd Detector for the EIC (Temple U.)
 - https://indico.bnl.gov/event/18414/
- EICUG 2023 (Warsaw, Poland)
 - https://indico.cern.ch/event/1238718/

Aspirational goals for a 2nd EIC detector

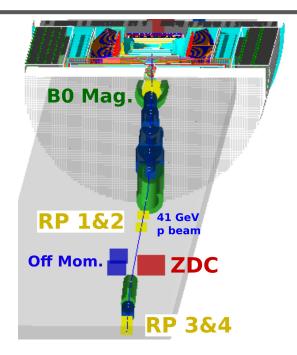
- MAGNETIC FIELD Solenoid field up to 3T, allowing for high resolution momentum reconstruction for charged particles.
- EXTENDED COVERAGE for precision electromagnetic calorimetry important for DVCS on nuclei.
- MUONS enhanced muon ID (not only MIPs) in the barrel and (possibly) backward region.
- BACKWARD HADRONIC CALORIMETER Low-x physics, reconstruction of current jets in the approach to saturation.
- **SECONDARY FOCUS** tagging for nearly all ion fragments and extended acceptance for low-pT/ low-x protons. Enables detection of short-lived rare isotopes.


Official Project Information


- e-p crossing angle 35 mRad
- A short space allocated for the central detector
 - Less space than ePIC
 - Hard decision needs to be made to meet the design goal (backward angle PID)

- Official Public Information: https://wiki.bnl.gov/eic-detector-2/index.php?title=Project_Information
 - Contact person: Bamunuvita Gamage (randika@jlab.org)
 - Further optimization is needed! (See example in later slides)

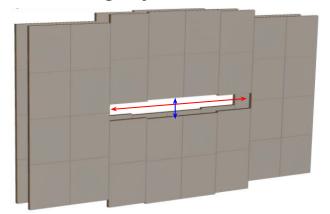
IP6 vs IP8: Similar But Different

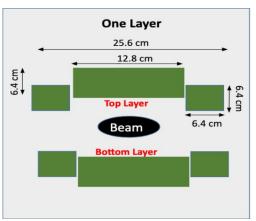


IP6 vs IP8: similar but different

IP6:

- 25 mrad e+p crossing angle
- ZDC Acceptance: -4.5 to +5.5

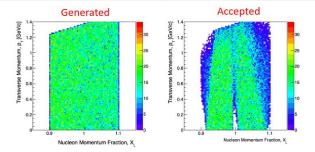



IP8:

- 35 mrad e+p crossing angle
- Second focus
- ZDC Acceptance: +-5

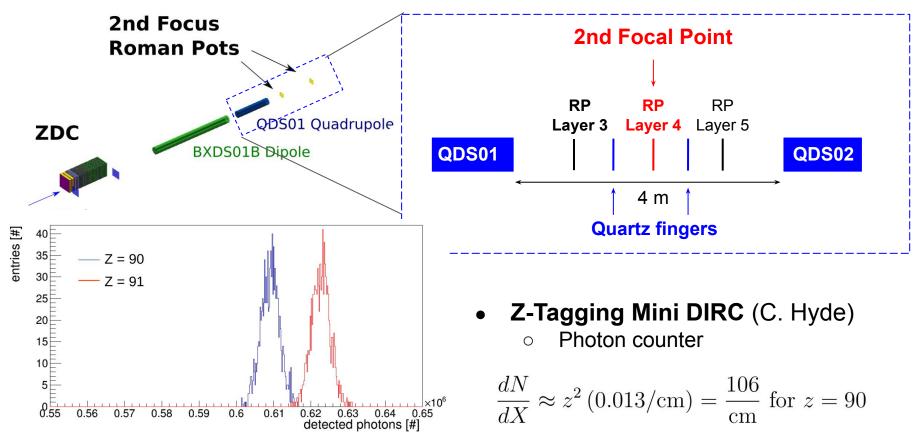
Roman Pots

Image by A. Jentsch, BNL



Primary consideration:

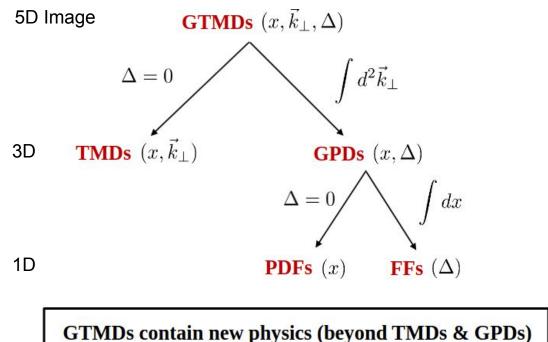
Slit opening 10σ wider than the beam width.


	Slit width	Slit height
IP6 RP 1&2	8.8 cm	1.2 cm
IP8 1&2	6.2 cm	0.8 cm
IP8 3&4 (2nd focus)	0.7 cm	0.2 cm

Acceptance study by Alex Jentsch, see full study:

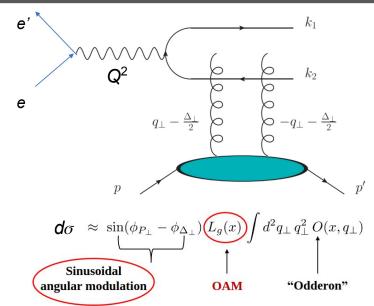
https://wiki.bnl.gov/eic-detector-2/images/8/86/IP8_HSR_lattice_per formance 10 13 22 v3.pdf 10

A Closer Look at the 2nd Focus Area and PID

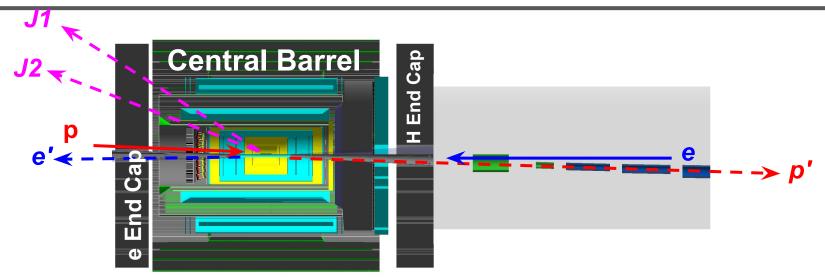

Golden Channels Strawman (from 1st EIC 2nd Meeting)

CHANNEL	PHYSICS	DETECTOR II OPPORTUNITY
Diffractive dijet	Wigner Distribution	detection of forward scattered proton/nucleus + detection of low \mathbf{p}_{T} particles
DVCS on nuclei	Nuclear GPDs	High resolution photon + detection of forward scattered proton/nucleus
Baryon/Charge Stopping	Origin of Baryon # in QCD	PID and detection for low p _T pi/K/p
F ₂ at low x and Q ²	Probes transition from partonic to color dipole regime	Maximize Q^2 tagger down to 0.1 GeV and integrate into IR.
Coherent VM Production	Nuclear shadowing and saturation	High resolution tracking for precision t reconstruction

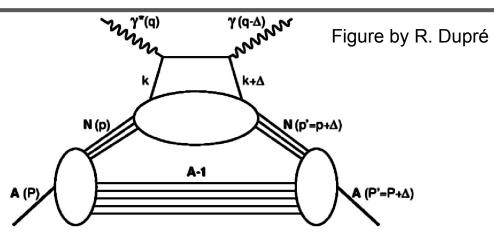
Based original slide by R. Fatemi


- Please note that these were selected to illustrate particular opportunities
- You are most welcome to add your favorite process!

Exclusive di-jets studies (Complementarity)


GIMDs contain new physics (beyond IMDs & GIDs)

Study by S. Bhattacharya, Y. Hatta, et. al.

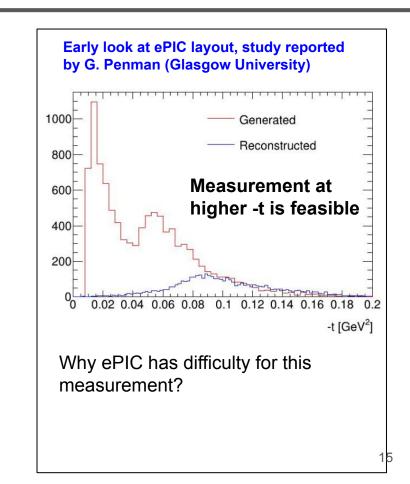

- d\(\sigma\) is sensitivity to the gluon Orbital Angular Momentum
- GTMDs are "disentangled" through suitable linear combination of Polarization Observables

Exclusive di-jets studies (Complementarity)

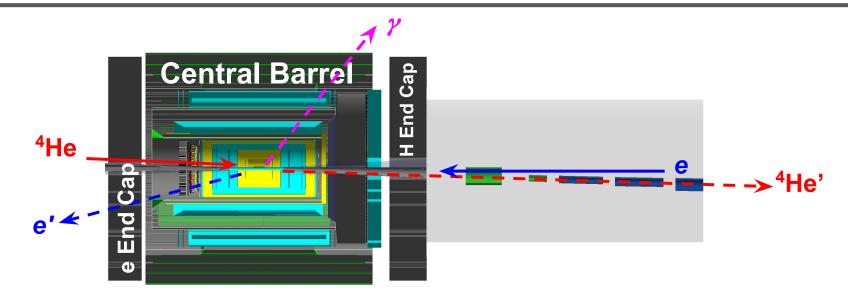
- Scattered electron (e'): $\eta \rightarrow -\infty$, far backward region, low Q^2 tagger
- Recoiled p: η ~ 6, far forward region
- **Jet 1 (J1) and Jet 2 (J2):** $-3.5 < \eta < -1.5$, Central detector
- "Complementarity"
 - ePIC has like to have an edge over the detector 2 central detector design
 - backward HCal (ECCE design lacks backward HCal)
 - ePIC has full backward angle PID

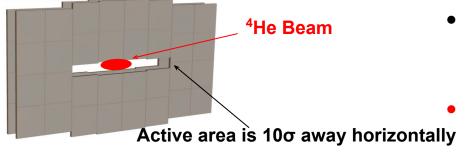
e+Light Nuclei DVCS (Complementarity)

Nuclei give control over the spin:

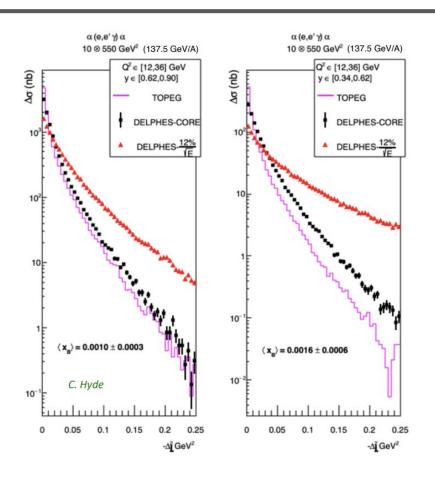

- Spin-0 2 GPD; Spin-1/2 8 GPDs; Spin-1 18 GPDs
- Half of these intervene in DVCS

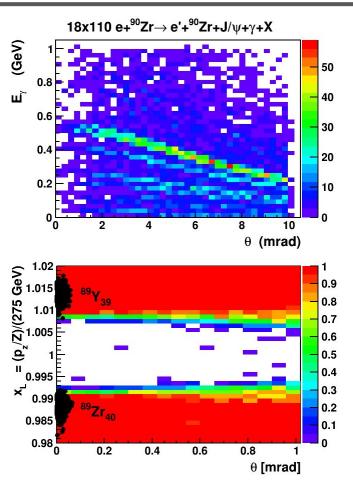
In the nucleus two processes


- Coherent and incoherent channel
- Probe the whole nucleus and the bound nucleons

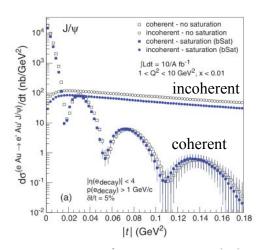

A perfect tool to study the EMC effect

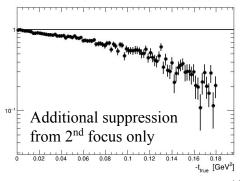
- Coherent DVCS gives access to the full nucleus
 - Including non-nucleonic degrees of freedom
- Incoherent DVCS gives access to the bound nucleon
 - To test modifications of the bound nucleon structure


Exclusive e+4He DVCS (Complementarity)


- Gluon exchange (specially at low Q²) induced a "gentle tap" will not deflect interacted ⁴He (at low -t) to be detected by the Roman Pots
 - 2nd focus will significantly improve the -t

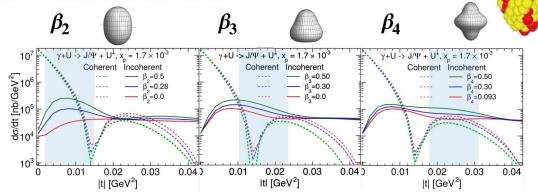
e+4He DVCS at IP8



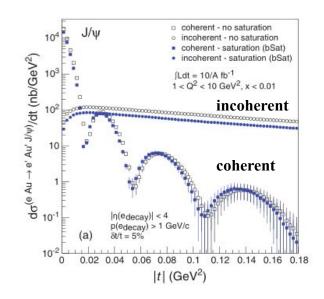

- For light nuclei, the 2nd focus enables detection with essentially 100% acceptance down to $p_{\tau} = 0$
- The study on the left shows the importance of the photon energy resolution of the barrel EMcal
 - PbWO4 with 1-2% resolution
 - ePIC's GlueX-like EMcal would fall in-between the PbWO4 (black) and 12% (red) points.

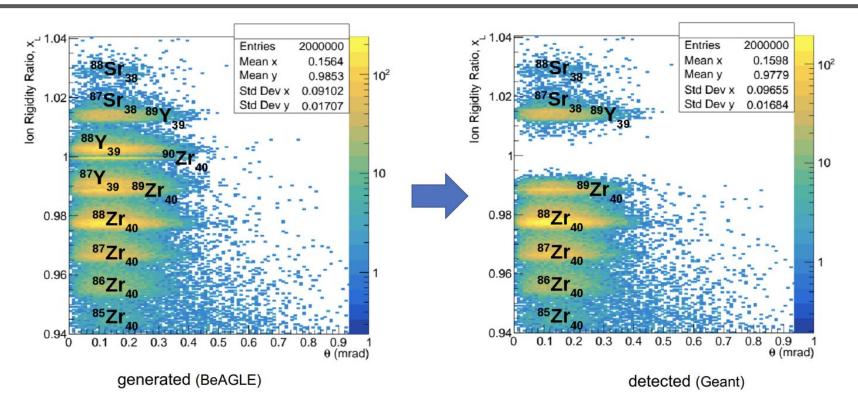
Vector Meson Production via Coherent diffractive Process with 90Zr

- Extended forward photon detection is synergetic with the 2nd focus in IR8.
 - ⁹⁰Zr is ideal for benchmarking:
 - The ability to tag A-1 nuclei in the 2nd focus and detect a large fraction of nuclear photons has the potential to significantly improve the suppression of incoherent backgrounds in coherent diffraction.
 - The photon detection will also help to distinguish reactions where the final nucleus was in the ground state or an excited state.
 - The figures on the left show the photons and A-1 fragments from ⁹⁰Zr
 - The figures on the right show the additional suppression at high t from the 2nd focus



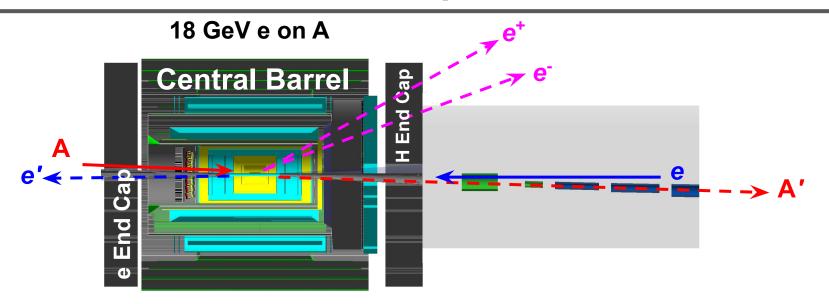
Vector Meson Production via Coherent diffractive Process


H. Mäntysaari, B. Schenke, C. Shen, W. Zhao, in progress

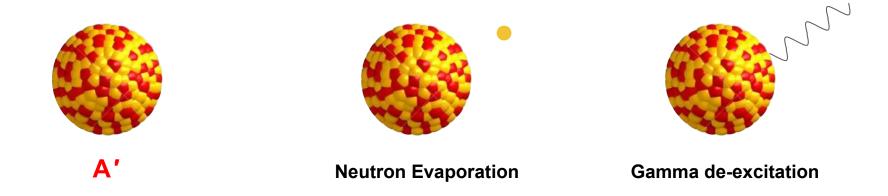

Diffractive Processes (no color exchange)

- Dips: "glumpiness" of gluon.
- Coherent and incoherent: shape of heavy nuclei.

Simulations of coherent diffraction with ⁹⁰Pb



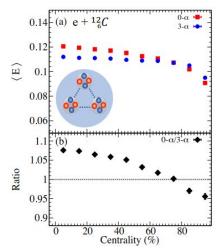
A-1 tagging with 2nd focus using a 90Zr beam

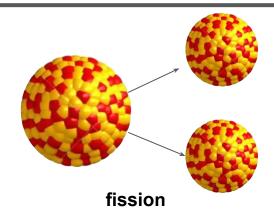

A similar study will be completed on Uranium

Exclusive Vector Meson production

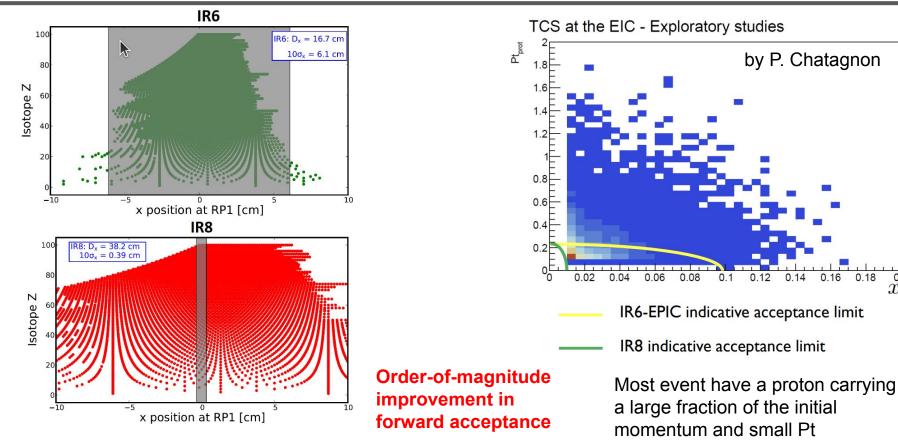
- Scattered electron (e'): $\eta \rightarrow -\infty$, far backward region, low Q² tagger
- Decayed $J/\psi \rightarrow e^+e^-$: -1.5< η <3.5, Central detector
- Recoiled A (A): η ~ 6, far forward region

What does A' do In the Beam Pipe? (Opportunities)

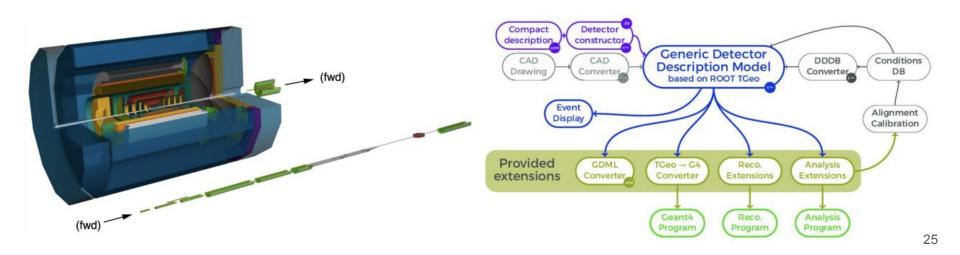

- eA Diffractive study, forward detector must:
 - Tag A'
 - Veto events due to neutron evaporation and gamma de-excitation


A' Decay is not all bad!

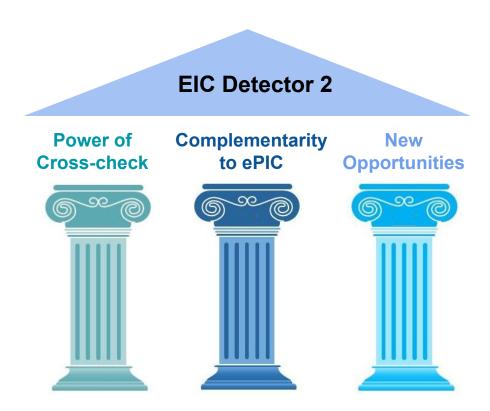
Neutron Evaporation


 Evaporated neutron energy deposition study by Niseem Magdy, Y. Jia, et. al.

 Direct measurement of final nuclei, including rare isotopes, and associated de-excitation gamma photons study by B. Moran, et. al.


EIC far-forward acceptance with and without a 2nd focus

Nuclear fragments detection at Roman Pot

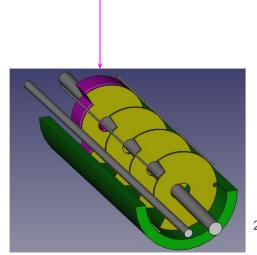

Software Tools

- Consensus: not to reinvent the wheel at this stage
- Make best use of ePIC development
 - DD4HEP as geometry description
 - Podio and EDM4hep as data model
 - EIC-recon as reconstruction
- Detail is to be developed

Conclusion

- Three pillars of 2nd Detector
 - Cross-check
 - Complementarity
 - Opportunities
- Enthusiasm from the community with drive the project forward
 - Your input is extremely valuable

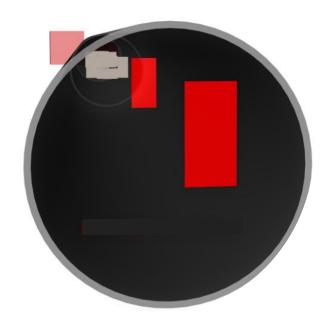
Acknowledgement and Advertisement


- Detector 2 is a new opportunity, require input from the community
- If you would like to share your idea, please reach out to any of the WG conveners directly:
 - https://eicug.github.io/content/wg.html#detector-iiip8-group

Backup

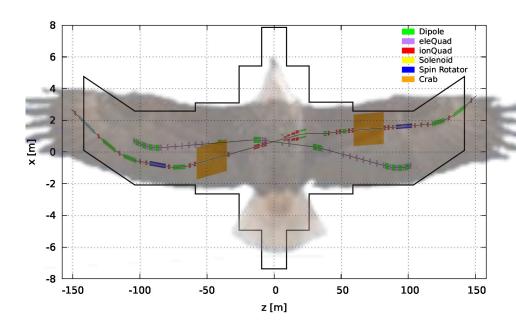
In terms of Far Forward Acceptance: B0 is the Key

- The increase to ZDC acceptance from +-5 to +-7 marginally increases the recoil nucleon acceptance:
 - e+p 5x41 GeV pion structure study: 20% increase in terms of nucleon detection efficiency
- Instrumentation of a full calorimeter inside B0 will significantly boost the forward acceptance: from +- 5 mrad to +-28 mrad!
- Due to special constraints, full Calorimeter might be a "no-go"


B0 Calorimeter

IP8 Forward Detector Suggestion

Detector	Acceptance	Requirement
ZDC	θ < 5.5 mrad (η > 6)	35%/√E ~1mm position resolution
RP 1&2	$0.0^* < \theta < 5.0 \text{ mrad } (\eta > 6)$	
RP 3&4	$0.0^* < \theta < 5.0 \text{ mrad } (\eta > 6)$	
Off Momentum	$0.0^* < \theta < 5.0 \text{ mrad } (\eta > 6)$	
B0 tracker + Calorimeter	$5.5 < \theta < 25.0 \text{ mrad}$ (4.6 < $\eta < 5.9$)	Full Calorimeter
PID at 2nd focus	$0.0^* < \theta < 5.0 \text{ mrad } (\eta > 6)$	Z tagger photon counter


Off Momentum Tracker

- Roman pot without slits.
- Offsetted to one direction
- Protons tagging:
 - o 123.75 < E < 151.25 GeV
 - \circ 45% < $p_{z,proton}/p z,beam < 55%$
- Tagging decay remnants from Λ or Σ

Image by A. Jentsch, BNL

Thank you for your attention!

Zero Degree Calorimeter

Image by engineers, BNL

ZDC

- Sensitive to soft photon and neutron
- IP6 ZDC +-5mrad acceptance
- IP8 benefit from higher acceptance?

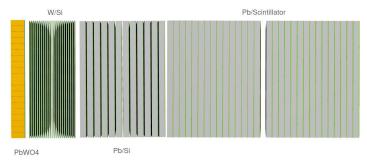
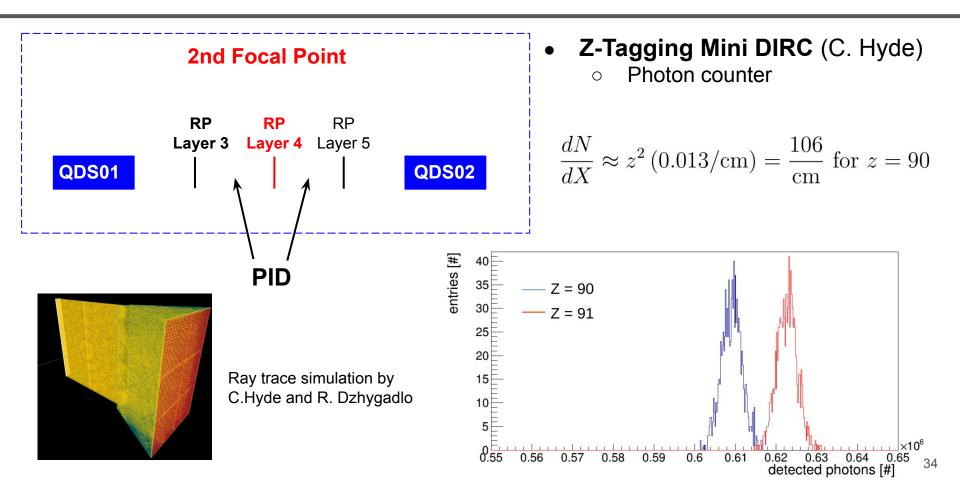
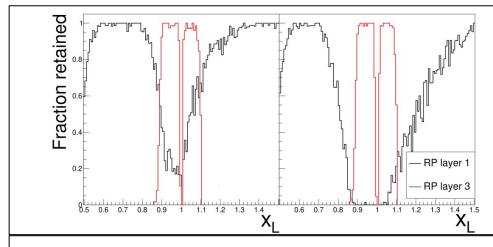
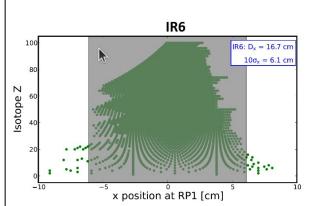
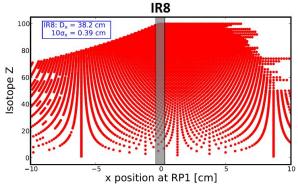




Image by D. Misra, PNNL

Ideas: Adding PID? Z-Tagging Mini DIRC Concept (C. Hyde)


In terms of PD acceptance



Rigidity fraction of eA diffractive process:

- with 2nd focus: black + red
- without 2nd focus: black

Study by M. Baker and others

Nuclear fragments detection at Roman Pot

Study by B. Moran and others 35